<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta name="generator" content="pdf2htmlEX">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css">
<link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css">
<link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/628009dcebb030486d2b4bc9/raw.css">
<script src="https://static.pudn.com/base/js/compatibility.min.js"></script>
<script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script>
<script>
try{
pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({});
}catch(e){}
</script>
<title></title>
</head>
<body>
<div id="sidebar" style="display: none">
<div id="outline">
</div>
</div>
<div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/628009dcebb030486d2b4bc9/bg1.jpg"><div class="c x0 y1 w2 h2"><div class="t m0 x1 h3 y2 ff1 fs0 fc0 sc0 ls0 ws0">1</div></div><div class="c x0 y3 w3 h4"><div class="t m0 x2 h5 y4 ff2 fs1 fc1 sc0 ls0 ws0"> </div><div class="t m0 x3 h5 y5 ff2 fs1 fc0 sc0 ls0 ws0"> </div><div class="t m0 x4 h5 y4 ff2 fs1 fc1 sc0 ls0 ws0">概 率 论</div><div class="t m0 x5 h5 y5 ff2 fs1 fc0 sc0 ls0 ws0">概 率 论</div></div></div><div class="pi" data-data='{"ctm":[1.333333,0.000000,0.000000,1.333333,0.000000,0.000000]}'></div></div>
</body>
</html>
<div id="pf2" class="pf w0 h0" data-page-no="2"><div class="pc pc2 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/628009dcebb030486d2b4bc9/bg2.jpg"><div class="t m0 x6 h6 y6 ff3 fs2 fc1 sc0 ls0 ws0">2</div><div class="c x0 y3 w3 h4"><div class="t m0 x7 h7 y7 ff3 fs3 fc2 sc0 ls0 ws0">第三章 多维随机变<span class="_ _0"></span>量及其分布</div><div class="t m0 x8 h8 y8 ff3 fs4 fc1 sc0 ls0 ws0">关键词:</div><div class="t m0 x9 h8 y9 ff3 fs4 fc3 sc0 ls0 ws0">二维随机变量</div><div class="t m0 x9 h8 ya ff3 fs4 fc3 sc0 ls0 ws0">分布函数 分布律<span class="_ _1"></span> 概率密度</div><div class="t m0 x9 h8 yb ff3 fs4 fc3 sc0 ls0 ws0">边缘分布函数<span class="_ _1"></span> 边缘分布律 边缘概<span class="_ _1"></span>率密度</div><div class="t m0 x9 h8 yc ff3 fs4 fc3 sc0 ls0 ws0">条件分布函数<span class="_ _1"></span> 条件分布律 条件概<span class="_ _1"></span>率密度</div><div class="t m0 x9 h8 yd ff3 fs4 fc3 sc0 ls0 ws0">随机变量的独<span class="_ _1"></span>立性</div><div class="t m0 x9 h8 ye ff3 fs4 fc3 sc0 ls0 ws0">Z=X+Y<span class="_ _2"> </span>的概率密度</div><div class="t m0 x9 h8 yf ff3 fs4 fc3 sc0 ls0 ws0">M=max(X,Y)<span class="_ _2"> </span>的概率<span class="_ _1"></span>密度</div><div class="t m0 x9 h8 y10 ff3 fs4 fc3 sc0 ls0 ws0">N=min(X,Y)<span class="_ _2"> </span>的概率密度</div></div></div><div class="pi" data-data='{"ctm":[1.333333,0.000000,0.000000,1.333333,0.000000,0.000000]}'></div></div>
<div id="pf3" class="pf w0 h0" data-page-no="3"><div class="pc pc3 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/628009dcebb030486d2b4bc9/bg3.jpg"><div class="c x0 y3 w3 h4"><div class="t m0 x6 h6 y11 ff3 fs2 fc1 sc0 ls0 ws0">3</div><div class="t m0 xa h9 y12 ff3 fs5 fc1 sc0 ls0 ws0">§1 <span class="_ _3"> </span>二维随机变量</div><div class="t m0 xb ha y13 ff3 fs6 fc1 sc0 ls0 ws0">问题的提<span class="_ _1"></span>出</div><div class="t m0 xc hb y14 ff3 fs7 fc1 sc0 ls0 ws0">例<span class="_ _2"> </span>1<span class="_ _4"> </span>:研究某一地区学龄儿童的发育情况。仅研究身</div><div class="t m0 xc hb y15 ff3 fs7 fc1 sc0 ls0 ws0">高<span class="_ _4"> </span><span class="sc1">H<span class="_ _2"> </span></span>的分布或仅研究体重<span class="_ _4"> </span><span class="sc1">W<span class="_ _2"> </span></span>的分布是不够的。需</div><div class="t m0 xc hb y16 ff3 fs7 fc1 sc0 ls0 ws0">要同时考察每个儿童的身高和体重值,研究身<span class="_ _5"> </span>高和体</div><div class="t m0 xc hb y17 ff3 fs7 fc1 sc0 ls0 ws0">重之间的关系,这就要引入定义在同一<span class="_ _5"> </span>样本空间的两</div><div class="t m0 xc hb y18 ff3 fs7 fc1 sc0 ls0 ws0">个随机变量。</div><div class="t m0 xc hb y19 ff3 fs7 fc1 sc0 ls0 ws0">例<span class="_ _4"> </span>2<span class="_ _2"> </span>:研究某种型号炮弹的弹着点分布。每枚炮弹的</div><div class="t m0 xc hb y1a ff3 fs7 fc1 sc0 ls0 ws0">弹着点位置需要由横坐标和纵坐标来确定,而<span class="_ _5"> </span>它们是</div><div class="t m0 xc hb y1b ff3 fs7 fc1 sc0 ls0 ws0">定义在同一样本空间的两个随机变量。</div></div></div><div class="pi" data-data='{"ctm":[1.333333,0.000000,0.000000,1.333333,0.000000,0.000000]}'></div></div>
<div id="pf4" class="pf w0 h0" data-page-no="4"><div class="pc pc4 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/628009dcebb030486d2b4bc9/bg4.jpg"><div class="c x0 y3 w3 h4"><div class="t m0 x6 h6 y11 ff3 fs2 fc1 sc0 ls0 ws0">4</div><div class="t m0 xd hc y1c ff3 fs8 fc1 sc0 ls0 ws0">定义:设<span class="_ _6"> </span>E<span class="_ _6"> </span>是一个随机试验,样本空间<span class="_ _6"> </span>S={e}<span class="_ _7"> </span>;</div><div class="t m0 xe hc y1d ff3 fs8 fc1 sc0 ls0 ws0">设<span class="_ _6"> </span>X=X(e)<span class="_ _7"> </span>和<span class="_ _6"> </span>Y=Y(e)<span class="_ _7"> </span>是定义</div><div class="t m0 xe hc y1e ff3 fs8 fc1 sc0 ls0 ws0">在<span class="_ _6"> </span>S<span class="_ _6"> </span>上<span class="_ _0"></span>的随机变量,由它们构成的</div><div class="t m0 xe hc y1f ff3 fs8 fc1 sc0 ls0 ws0">向量<span class="_ _6"> </span>(X,Y)<span class="_ _7"> </span>叫做<span class="sc1">二维随机向量</span></div><div class="t m0 xe hc y20 ff3 fs8 fc1 sc0 ls0 ws0">或<span class="sc1">二维随机变量</span>。</div><div class="t m1 xf hd y21 ff4 fs9 fc1 sc0 ls0 ws0"><span class="_ _8"> </span></div><div class="t m2 x10 he y22 ff1 fsa fc1 sc0 ls0 ws0">(<span class="_ _9"> </span>,<span class="_ _a"> </span>)<span class="_ _b"> </span>(<span class="_ _c"> </span>)<span class="_ _d"> </span>(<span class="_ _e"> </span>)</div><div class="t m2 x11 he y23 ff1 fsa fc1 sc0 ls0 ws0"> <span class="_ _f"> </span>(<span class="_ _c"> </span>,<span class="_ _10"> </span>)</div><div class="t m2 x11 hf y22 ff5 fsa fc1 sc0 ls0 ws0">F<span class="_ _11"> </span>x<span class="_ _12"> </span>y<span class="_ _13"> </span>P<span class="_ _d"> </span>X<span class="_ _14"> </span>x<span class="_ _15"> </span>Y<span class="_ _14"> </span>y</div><div class="t m2 x12 hf y23 ff5 fsa fc1 sc0 ls0 ws0">P<span class="_ _12"> </span>X<span class="_ _16"> </span>x<span class="_ _17"> </span>Y<span class="_ _14"> </span>y</div><div class="t m2 x13 h10 y22 ff4 fsa fc1 sc0 ls0 ws0"><span class="_ _18"> </span><span class="_ _19"> </span></div><div class="t m2 x14 h10 y23 ff4 fsa fc1 sc0 ls0 ws0"><span class="_ _1a"></span><span class="_ _1b"> </span><span class="_ _1c"> </span></div><div class="t m2 x15 h10 y22 ff4 fsa fc1 sc0 ls0 ws0"></div><div class="t m3 x16 h11 y24 ff3 fsb fc1 sc0 ls0 ws0">记成</div><div class="t m0 x17 h12 y25 ff6 fsc fc2 sc0 ls0 ws0">0</div><div class="t m4 x18 h13 y26 ff5 fsd fc1 sc0 ls0 ws0">x</div><div class="t m5 x19 h14 y27 ff4 fse fc1 sc0 ls0 ws0"><span class="_ _1d"> </span></div><div class="t m0 x1a h15 y28 ff1 fsf fc1 sc0 ls0 ws0">,<span class="_ _1e"></span><span class="ff5">x<span class="_ _1f"> </span>y</span></div><div class="t m6 x1b h16 y29 ff5 fs10 fc1 sc0 ls0 ws0">y</div><div class="t m0 x1c h17 y2a ff7 fs8 fc2 sc0 ls0 ws0">S</div><div class="t m0 x1d h17 y2b ff7 fs8 fc2 sc0 ls0 ws0">e</div><div class="t m7 x1e h18 y2c ff5 fs11 fc1 sc0 ls0 ws0">y</div><div class="t m8 x1f h19 y2d ff4 fs12 fc1 sc0 ls0 ws0"><span class="_ _1f"> </span><span class="_ _d"> </span><span class="_ _1f"> </span></div><div class="t m9 x20 h1a y2e ff4 fs13 fc1 sc0 ls0 ws0"><span class="_ _20"> </span></div><div class="t m0 x21 h1b y2f ff1 fs14 fc1 sc0 ls0 ws0">,<span class="_ _21"></span><span class="ff5">X<span class="_ _12"> </span>e<span class="_ _22"> </span>Y<span class="_ _1f"> </span>e</span></div><div class="t m4 x22 h13 y30 ff5 fsd fc1 sc0 ls0 ws0">x</div><div class="t m0 x23 hc y31 ff3 fs8 fc1 sc0 ls0 ws0">定义:设<span class="_ _6"> </span>(X,Y)<span class="_ _7"> </span>是二维随机变量对于任意实数<span class="_ _2"> </span>x<span class="_ _0"></span>,y<span class="_ _6"> </span>,</div><div class="t m0 x24 hc y32 ff3 fs8 fc1 sc0 ls0 ws0">二元函数</div><div class="t m0 x23 hc y33 ff3 fs8 fc1 sc0 ls0 ws0">称为<span class="sc1">二维随机变量<span class="_ _6"> </span>(X,Y)<span class="_ _6"> </span>的分布函数。</span></div></div></div><div class="pi" data-data='{"ctm":[1.333333,0.000000,0.000000,1.333333,0.000000,0.000000]}'></div></div>
<div id="pf5" class="pf w0 h0" data-page-no="5"><div class="pc pc5 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/628009dcebb030486d2b4bc9/bg5.jpg"><div class="c x0 y3 w3 h4"><div class="t m0 x6 h6 y11 ff3 fs2 fc1 sc0 ls0 ws0">5</div><div class="t m0 x25 h9 y34 ff3 fs5 fc1 sc0 ls0 ws0"> <span class="_ _3"> </span>分布函<span class="_ _1"></span>数<span class="_ _6"> </span> 的性质</div><div class="t ma x26 h1c y35 ff1 fs15 fc1 sc0 ls0 ws0">1<span class="_ _23"> </span>2<span class="_ _24"> </span>1<span class="_ _25"> </span>2</div><div class="t mb x27 h1d y36 ff1 fs16 fc1 sc0 ls0 ws0">(<span class="_ _d"> </span>,<span class="_ _26"> </span>)<span class="_ _f"> </span>(<span class="_ _27"> </span>,<span class="_ _28"> </span>)<span class="_ _29"></span><span class="ff5">x<span class="_ _2a"> </span>x<span class="_ _2b"> </span>F<span class="_ _2c"> </span>x<span class="_ _2d"> </span>y<span class="_ _2e"> </span>F<span class="_ _2c"> </span>x<span class="_ _2f"> </span>y<span class="_ _30"></span><span class="ff4"><span class="_ _31"> </span><span class="_ _20"> </span></span></span></div><div class="t m0 x28 h12 y37 ff7 fsc fc2 sc0 ls0 ws0">x</div><div class="t m0 x20 h1e y2b ff6 fs17 fc2 sc0 ls0 ws0">1</div><div class="t m0 x29 h12 y38 ff7 fsc fc2 sc0 ls0 ws0">x</div><div class="t m0 x2a h1e y39 ff6 fs17 fc2 sc0 ls0 ws0">2</div><div class="t m0 x2b h1f y3a ff6 fs2 fc2 sc0 ls0 ws0">(x</div><div class="t m0 x2c h20 y3b ff6 fs18 fc2 sc0 ls0 ws0">1</div><div class="t m0 x2d h1f y3a ff6 fs2 fc2 sc0 ls0 ws0">,y)</div><div class="t m0 x2e h1f y3c ff6 fs2 fc2 sc0 ls0 ws0">(x</div><div class="t m0 x2f h20 y3d ff6 fs18 fc2 sc0 ls0 ws0">2</div><div class="t m0 x30 h1f y3c ff6 fs2 fc2 sc0 ls0 ws0">,y)</div><div class="t m0 x31 h1f y3e ff6 fs2 fc2 sc0 ls0 ws0">y</div><div class="t m0 x32 h1f y3f ff6 fs2 fc2 sc0 ls0 ws0">y</div><div class="t m0 x33 h20 y40 ff6 fs18 fc2 sc0 ls0 ws0">2</div><div class="t m0 x34 h12 y41 ff7 fsc fc2 sc0 ls0 ws0">x</div><div class="t m0 x32 h1f y42 ff6 fs2 fc2 sc0 ls0 ws0">y</div><div class="t m0 x33 h20 y43 ff6 fs18 fc2 sc0 ls0 ws0">1</div><div class="t m0 x1f h1f y44 ff6 fs2 fc2 sc0 ls0 ws0">(x,y</div><div class="t m0 x2f h20 y45 ff7 fs18 fc2 sc0 ls0 ws0">1</div><div class="t m0 x30 h1f y44 ff6 fs2 fc2 sc0 ls0 ws0">)</div><div class="t m0 x1f h1f y46 ff6 fs2 fc2 sc0 ls0 ws0">(x,y</div><div class="t m0 x2a h20 y47 ff7 fs18 fc2 sc0 ls0 ws0">2</div><div class="t m0 x35 h1f y46 ff6 fs2 fc2 sc0 ls0 ws0">)</div><div class="t mc x36 h21 y48 ff1 fs19 fc1 sc0 ls0 ws0">(<span class="_ _32"> </span>,<span class="_ _d"> </span>)<span class="_ _33"></span><span class="ff5">F<span class="_ _32"> </span>x<span class="_ _34"> </span>y</span></div><div class="t m0 x37 h22 y49 ff1 fs1a fc1 sc0 ls0 ws0">1<span class="_ _35"> </span>2<span class="_ _20"> </span>1<span class="_ _36"> </span>2</div><div class="t md x12 h23 y1f ff1 fs1b fc1 sc0 ls0 ws0">(<span class="_ _37"> </span>,<span class="_ _38"> </span>)<span class="_ _39"> </span>(<span class="_ _37"> </span>,<span class="_ _3a"> </span>)<span class="_ _3b"></span><span class="ff5">y<span class="_ _2a"> </span>y<span class="_ _f"> </span>F<span class="_ _37"> </span>x<span class="_ _22"> </span>y<span class="_ _3c"> </span>F<span class="_ _37"> </span>x<span class="_ _3d"> </span>y<span class="_ _3e"></span><span class="ff4"><span class="_ _31"> </span><span class="_ _3f"> </span></span></span></div><div class="t m0 x38 h24 y4a ff1 fs1b fc1 sc0 ls0 ws0">2<span class="_ _1f"> </span> <span class="_ _40"></span>0<span class="_ _1b"> </span>(<span class="_ _37"> </span>,<span class="_ _41"> </span>)<span class="_ _2f"> </span>1<span class="_ _4"> </span> <span class="_ _26"> </span>(<span class="_ _42"> </span>,<span class="_ _43"> </span>)<span class="_ _44"> </span>1</div><div class="t m0 x38 h24 y4b ff1 fs1b fc1 sc0 ls0 ws0"> <span class="_ _45"> </span>,</div><div class="t m0 x39 h25 y4a ff5 fs1b fc1 sc0 ls0 ws0">F<span class="_ _37"> </span>x<span class="_ _3d"> </span>y<span class="_ _46"> </span>F</div><div class="t m0 x3a h25 y4b ff5 fs1b fc1 sc0 ls0 ws0">x<span class="_ _22"> </span>y</div><div class="t m0 x3b h23 y4a ff4 fs1b fc1 sc0 ls0 ws0"><span class="_ _47"> </span><span class="_ _b"> </span><span class="_ _48"></span><span class="_ _49"> </span><span class="_ _48"></span><span class="_ _2c"> </span></div><div class="t me x25 h26 y4c ff4 fs1a fc1 sc0 ls0 ws0"></div><div class="t m0 x3c h27 y4a ff3 fs1b fc1 sc0 ls0 ws0">,</div><div class="t m0 x8 h27 y4b ff3 fs1b fc1 sc0 ls0 ws0">对任意</div><div class="t mf x3d h23 y4d ff1 fs1b fc1 sc0 ls0 ws0"> <span class="_ _41"> </span>(<span class="_ _42"> </span>,<span class="_ _41"> </span>)<span class="_ _4a"> </span>(<span class="_ _37"> </span>,<span class="_ _43"> </span>)<span class="_ _4a"> </span>(<span class="_ _4b"> </span>,<span class="_ _43"> </span>)<span class="_ _4c"> </span>0<span class="_ _4d"></span><span class="ff5">F<span class="_ _46"> </span>y<span class="_ _4e"> </span>F<span class="_ _37"> </span>x<span class="_ _4f"> </span>F<span class="_ _50"></span><span class="ff4"><span class="_ _6"> </span><span class="_ _1d"> </span><span class="_ _10"> </span><span class="_ _2"> </span><span class="_ _34"> </span><span class="_ _51"> </span><span class="_ _6"> </span><span class="_ _49"> </span><span class="_ _7"> </span><span class="_ _2c"> </span></span></span></div><div class="t m10 x3e h28 y4e ff4 fs1c fc4 sc0 ls0 ws0"><span class="_ _b"> </span></div><div class="t m0 x3f h25 y4f ff1 fs1b fc4 sc0 ls0 ws0">1<span class="_ _10"> </span>,<span class="_ _52"> </span>,<span class="_ _53"></span><span class="ff5">F<span class="_ _54"> </span>x<span class="_ _22"> </span>y<span class="_ _55"> </span>x<span class="_ _22"> </span>y</span></div><div class="t m0 x40 h29 y50 ff3 fs1a fc4 sc0 ls0 ws0">。</div><div class="t m0 x3a h27 y4f ff3 fs1b fc4 sc0 ls0 ws0">关于<span class="_ _56"> </span>单调不减,即:</div></div></div><div class="pi" data-data='{"ctm":[1.333333,0.000000,0.000000,1.333333,0.000000,0.000000]}'></div></div>