计算机视觉课程COMPUTER VISION

  • L8_698409
    了解作者
  • 13MB
    文件大小
  • rar
    文件格式
  • 0
    收藏次数
  • VIP专享
    资源类型
  • 0
    下载次数
  • 2022-04-21 02:31
    上传日期
1)  绪论 (Introduction) 2)  图象滤波 (Image Filtering) 3)  二进制图象处理 (Binary Image Processing) 4)  区域 (Region) 5)  边缘检测 (Edge Detection) 6)  立体视觉 (Stereo) 7)  运动的理解与估值 (Motion) 8)  轮廓 (Contours) 9)  纹理 (Texture)   10)  图象光度学 (Shading) 11)  光流场 (Optic Flows) 12)  系统校准 (Calibration) 13)  曲线与曲面 (Curves and Surfaces) 14)  动态视觉 (Dynamic Vision) 15) 三维识别 (Object Recognition)
cv.rar
  • cv
  • 14.ppt
    253.5KB
  • Homework-1.doc
    24.5KB
  • Homework-2.doc
    57KB
  • 5.ppt
    1.4MB
  • 11.ppt
    1.1MB
  • 2.ppt
    1.6MB
  • 4.ppt
    1.3MB
  • 3.ppt
    11.6MB
  • 10.ppt
    143KB
  • 1.ppt
    914.5KB
  • 9.ppt
    580.5KB
  • 12.ppt
    234KB
  • 15.ppt
    4MB
  • corner.ppt
    224KB
  • 6.ppt
    754KB
  • 13.ppt
    422KB
  • 7.ppt
    601.5KB
  • 8.ppt
    187.5KB
内容介绍
<html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta charset="utf-8"> <meta name="generator" content="pdf2htmlEX"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css"> <link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css"> <link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/6286fd2fb305d84a4f8b58a9/raw.css"> <script src="https://static.pudn.com/base/js/compatibility.min.js"></script> <script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script> <script> try{ pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({}); }catch(e){} </script> <title></title> </head> <body> <div id="sidebar" style="display: none"> <div id="outline"> </div> </div> <div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/6286fd2fb305d84a4f8b58a9/bg1.jpg"><div class="c x0 y1 w2 h2"><div class="t m0 x1 h3 y2 ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _0"> </span><span class="fs1">Find the co-occurrence matrix of the following image for <span class="_ _1"> </span>= (<span class="_ _2"> </span>) = (2, 1).</span></div><div class="t m0 x1 h4 y3 ff1 fs0 fc0 sc0 ls0 ws0">2<span class="_ _3"> </span>1<span class="_ _3"> </span>2<span class="_ _3"> </span>0<span class="_ _3"> </span>1<span class="_ _3"> </span>0<span class="_ _3"> </span>2<span class="_ _3"> </span>1</div><div class="t m0 x1 h4 y4 ff1 fs0 fc0 sc0 ls0 ws0">0<span class="_ _3"> </span>2<span class="_ _3"> </span>1<span class="_ _3"> </span>1<span class="_ _3"> </span>2<span class="_ _3"> </span>1<span class="_ _3"> </span>2<span class="_ _3"> </span>2</div><div class="t m0 x1 h4 y5 ff1 fs0 fc0 sc0 ls0 ws0">0<span class="_ _3"> </span>1<span class="_ _3"> </span>2<span class="_ _3"> </span>2<span class="_ _3"> </span>0<span class="_ _3"> </span>0<span class="_ _3"> </span>2<span class="_ _3"> </span>1</div><div class="t m0 x1 h4 y6 ff1 fs0 fc0 sc0 ls0 ws0">1<span class="_ _3"> </span>2<span class="_ _3"> </span>2<span class="_ _3"> </span>0<span class="_ _3"> </span>1<span class="_ _3"> </span>1<span class="_ _3"> </span>2<span class="_ _3"> </span>2</div><div class="t m0 x1 h4 y7 ff1 fs0 fc0 sc0 ls0 ws0">2<span class="_ _3"> </span>0<span class="_ _3"> </span>1<span class="_ _3"> </span>0<span class="_ _3"> </span>1<span class="_ _3"> </span>2<span class="_ _3"> </span>1<span class="_ _3"> </span>1</div><div class="t m0 x1 h4 y8 ff1 fs0 fc0 sc0 ls0 ws0">1<span class="_ _3"> </span>2<span class="_ _3"> </span>2<span class="_ _3"> </span>1<span class="_ _3"> </span>1<span class="_ _3"> </span>0<span class="_ _3"> </span>1<span class="_ _3"> </span>0</div><div class="t m0 x1 h4 y9 ff1 fs0 fc0 sc0 ls0 ws0">2<span class="_ _3"> </span>1<span class="_ _3"> </span>1<span class="_ _3"> </span>0<span class="_ _3"> </span>2<span class="_ _3"> </span>1<span class="_ _3"> </span>2<span class="_ _3"> </span>0</div><div class="t m0 x1 h4 ya ff1 fs0 fc0 sc0 ls0 ws0">0<span class="_ _3"> </span>2<span class="_ _3"> </span>2<span class="_ _3"> </span>1<span class="_ _3"> </span>0<span class="_ _3"> </span>0<span class="_ _3"> </span>0<span class="_ _3"> </span>1</div><div class="t m0 x1 h4 yb ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _0"> </span>A<span class="_ _4"></span> Lambertian<span class="_ _5"></span> corn <span class="_ _5"></span>with <span class="_ _5"></span>its a<span class="_ _5"></span>xis located<span class="_ _5"></span> along <span class="_ _5"></span>the <span class="_ _5"></span>z-axis is<span class="_ _5"></span> illuminated<span class="_ _5"></span> by <span class="_ _5"></span>parallel<span class="_ _5"></span> light <span class="_ _5"></span>source from<span class="_ _5"></span> y-</div><div class="t m0 x2 h4 yc ff1 fs0 fc0 sc0 ls0 ws0">direction, as shown in the figure. </div><div class="t m0 x2 h4 yd ff1 fs0 fc0 sc0 ls0 ws0">Find the reflectance map <span class="ff2">R</span>(<span class="ff2">p, q</span>) of this illumination condition.</div><div class="t m0 x1 h3 ye ff1 fs1 fc0 sc0 ls0 ws0">2.<span class="fs0"> <span class="_ _6"> </span>A<span class="_ _5"></span> <span class="_ _7"> </span>constant<span class="_ _8"></span> <span class="_ _8"></span>motion<span class="_ _8"></span> <span class="_ _8"></span>can<span class="_ _8"></span> <span class="_ _8"> </span>be<span class="_ _8"></span> <span class="_ _8"> </span>described<span class="_ _8"> </span> <span class="_ _8"> </span>a<span class="_ _5"></span>s<span class="_ _9"> </span> <span class="_ _a"> </span>,<span class="_ _8"></span> <span class="_ _8"></span>in<span class="_ _8"></span> <span class="_ _8"></span>which<span class="_ _8"></span> <span class="_ _8"> </span>the</span></div><div class="t m0 x1 h4 yf ff1 fs0 fc0 sc0 ls0 ws0">rotations <span class="_ _b"> </span>are made around <span class="_ _5"></span>an axis passing though <span class="_ _5"></span>the origin. On the<span class="_ _5"></span> other hand, a <span class="_ _5"></span>vehicle type motion</div><div class="t m0 x1 h4 y10 ff1 fs0 fc0 sc0 ls0 ws0">is modeled as<span class="ff3">&#65306;<span class="_ _c"> </span></span>, with constraints of </div><div class="t m0 x3 h4 y11 ff1 fs0 fc0 sc0 ls0 ws0"> </div><div class="t m0 x1 h4 y12 ff1 fs0 fc0 sc0 ls0 ws0">where<span class="ff3">&#65292;<span class="_ _d"> </span></span> is rotation matrix<span class="ff3">&#65307;<span class="_ _e"> </span></span>is rotation center at the object<span class="ff3">&#65307;<span class="_ _f"> </span></span> is translation vector<span class="_ _4"></span>.</div><div class="t m0 x1 h4 y13 ff1 fs0 fc0 sc0 ls0 ws0">Prove that <span class="_ _10"> </span>1) this two model are identical</div><div class="t m0 x4 h4 y14 ff1 fs0 fc0 sc0 ls0 ws0">2) constant motion is actually a screw motion.</div></div></div><div class="pi" data-data='{"ctm":[1.611850,0.000000,0.000000,1.611850,0.000000,0.000000]}'></div></div> </body> </html>
评论
    相关推荐