<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta name="generator" content="pdf2htmlEX">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css">
<link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css">
<link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/6286fd2fb305d84a4f8b58a9/raw.css">
<script src="https://static.pudn.com/base/js/compatibility.min.js"></script>
<script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script>
<script>
try{
pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({});
}catch(e){}
</script>
<title></title>
</head>
<body>
<div id="sidebar" style="display: none">
<div id="outline">
</div>
</div>
<div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/6286fd2fb305d84a4f8b58a9/bg1.jpg"><div class="c x0 y1 w2 h2"><div class="t m0 x1 h3 y2 ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _0"> </span><span class="fs1">Find the co-occurrence matrix of the following image for <span class="_ _1"> </span>= (<span class="_ _2"> </span>) = (2, 1).</span></div><div class="t m0 x1 h4 y3 ff1 fs0 fc0 sc0 ls0 ws0">2<span class="_ _3"> </span>1<span class="_ _3"> </span>2<span class="_ _3"> </span>0<span class="_ _3"> </span>1<span class="_ _3"> </span>0<span class="_ _3"> </span>2<span class="_ _3"> </span>1</div><div class="t m0 x1 h4 y4 ff1 fs0 fc0 sc0 ls0 ws0">0<span class="_ _3"> </span>2<span class="_ _3"> </span>1<span class="_ _3"> </span>1<span class="_ _3"> </span>2<span class="_ _3"> </span>1<span class="_ _3"> </span>2<span class="_ _3"> </span>2</div><div class="t m0 x1 h4 y5 ff1 fs0 fc0 sc0 ls0 ws0">0<span class="_ _3"> </span>1<span class="_ _3"> </span>2<span class="_ _3"> </span>2<span class="_ _3"> </span>0<span class="_ _3"> </span>0<span class="_ _3"> </span>2<span class="_ _3"> </span>1</div><div class="t m0 x1 h4 y6 ff1 fs0 fc0 sc0 ls0 ws0">1<span class="_ _3"> </span>2<span class="_ _3"> </span>2<span class="_ _3"> </span>0<span class="_ _3"> </span>1<span class="_ _3"> </span>1<span class="_ _3"> </span>2<span class="_ _3"> </span>2</div><div class="t m0 x1 h4 y7 ff1 fs0 fc0 sc0 ls0 ws0">2<span class="_ _3"> </span>0<span class="_ _3"> </span>1<span class="_ _3"> </span>0<span class="_ _3"> </span>1<span class="_ _3"> </span>2<span class="_ _3"> </span>1<span class="_ _3"> </span>1</div><div class="t m0 x1 h4 y8 ff1 fs0 fc0 sc0 ls0 ws0">1<span class="_ _3"> </span>2<span class="_ _3"> </span>2<span class="_ _3"> </span>1<span class="_ _3"> </span>1<span class="_ _3"> </span>0<span class="_ _3"> </span>1<span class="_ _3"> </span>0</div><div class="t m0 x1 h4 y9 ff1 fs0 fc0 sc0 ls0 ws0">2<span class="_ _3"> </span>1<span class="_ _3"> </span>1<span class="_ _3"> </span>0<span class="_ _3"> </span>2<span class="_ _3"> </span>1<span class="_ _3"> </span>2<span class="_ _3"> </span>0</div><div class="t m0 x1 h4 ya ff1 fs0 fc0 sc0 ls0 ws0">0<span class="_ _3"> </span>2<span class="_ _3"> </span>2<span class="_ _3"> </span>1<span class="_ _3"> </span>0<span class="_ _3"> </span>0<span class="_ _3"> </span>0<span class="_ _3"> </span>1</div><div class="t m0 x1 h4 yb ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _0"> </span>A<span class="_ _4"></span> Lambertian<span class="_ _5"></span> corn <span class="_ _5"></span>with <span class="_ _5"></span>its a<span class="_ _5"></span>xis located<span class="_ _5"></span> along <span class="_ _5"></span>the <span class="_ _5"></span>z-axis is<span class="_ _5"></span> illuminated<span class="_ _5"></span> by <span class="_ _5"></span>parallel<span class="_ _5"></span> light <span class="_ _5"></span>source from<span class="_ _5"></span> y-</div><div class="t m0 x2 h4 yc ff1 fs0 fc0 sc0 ls0 ws0">direction, as shown in the figure. </div><div class="t m0 x2 h4 yd ff1 fs0 fc0 sc0 ls0 ws0">Find the reflectance map <span class="ff2">R</span>(<span class="ff2">p, q</span>) of this illumination condition.</div><div class="t m0 x1 h3 ye ff1 fs1 fc0 sc0 ls0 ws0">2.<span class="fs0"> <span class="_ _6"> </span>A<span class="_ _5"></span> <span class="_ _7"> </span>constant<span class="_ _8"></span> <span class="_ _8"></span>motion<span class="_ _8"></span> <span class="_ _8"></span>can<span class="_ _8"></span> <span class="_ _8"> </span>be<span class="_ _8"></span> <span class="_ _8"> </span>described<span class="_ _8"> </span> <span class="_ _8"> </span>a<span class="_ _5"></span>s<span class="_ _9"> </span> <span class="_ _a"> </span>,<span class="_ _8"></span> <span class="_ _8"></span>in<span class="_ _8"></span> <span class="_ _8"></span>which<span class="_ _8"></span> <span class="_ _8"> </span>the</span></div><div class="t m0 x1 h4 yf ff1 fs0 fc0 sc0 ls0 ws0">rotations <span class="_ _b"> </span>are made around <span class="_ _5"></span>an axis passing though <span class="_ _5"></span>the origin. On the<span class="_ _5"></span> other hand, a <span class="_ _5"></span>vehicle type motion</div><div class="t m0 x1 h4 y10 ff1 fs0 fc0 sc0 ls0 ws0">is modeled as<span class="ff3">:<span class="_ _c"> </span></span>, with constraints of </div><div class="t m0 x3 h4 y11 ff1 fs0 fc0 sc0 ls0 ws0"> </div><div class="t m0 x1 h4 y12 ff1 fs0 fc0 sc0 ls0 ws0">where<span class="ff3">,<span class="_ _d"> </span></span> is rotation matrix<span class="ff3">;<span class="_ _e"> </span></span>is rotation center at the object<span class="ff3">;<span class="_ _f"> </span></span> is translation vector<span class="_ _4"></span>.</div><div class="t m0 x1 h4 y13 ff1 fs0 fc0 sc0 ls0 ws0">Prove that <span class="_ _10"> </span>1) this two model are identical</div><div class="t m0 x4 h4 y14 ff1 fs0 fc0 sc0 ls0 ws0">2) constant motion is actually a screw motion.</div></div></div><div class="pi" data-data='{"ctm":[1.611850,0.000000,0.000000,1.611850,0.000000,0.000000]}'></div></div>
</body>
</html>