<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta name="generator" content="pdf2htmlEX">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css">
<link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css">
<link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/628678ba16e0ca7141ba17ea/raw.css">
<script src="https://static.pudn.com/base/js/compatibility.min.js"></script>
<script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script>
<script>
try{
pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({});
}catch(e){}
</script>
<title></title>
</head>
<body>
<div id="sidebar" style="display: none">
<div id="outline">
</div>
</div>
<div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/628678ba16e0ca7141ba17ea/bg1.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">MATLAB (1): <span class="ff2 sc1 ls1 ws1">基础篇</span></div><div class="t m0 x2 h3 y2 ff2 fs1 fc0 sc1 ls2 ws1">基本原理,矩阵运算,数组运算,</div><div class="t m0 x2 h3 y3 ff2 fs1 fc0 sc1 ls2 ws1">矩阵函数,信号处理和多项式,绘</div><div class="t m0 x2 h3 y4 ff2 fs1 fc0 sc1 ls2 ws1">图,控制流</div><div class="t m0 x3 h4 y5 ff2 fs2 fc1 sc2 ls3 ws1">教材:<span class="fc2 sc3 ls4">姚俊,马松辉<span class="ff1 sc0 ls5">. </span><span class="ls6">《<span class="ff1 sc0">Simulink</span><span class="ls7">建模与仿真》<span class="ff1 sc0 ls8">. </span>西安电子科技大学出版社</span></span></span></div></div><div class="pi" data-data='{"ctm":[0.000000,-1.337047,1.337047,0.000000,-82.896936,758.105850]}'></div></div>
</body>
</html>
<div id="pf2" class="pf w0 h0" data-page-no="2"><div class="pc pc2 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/628678ba16e0ca7141ba17ea/bg2.jpg"><div class="t m0 x4 h2 y6 ff1 fs0 fc0 sc0 ls9 ws2">1.1 <span class="ff2 sc1 ls1 ws1">基本原理</span></div><div class="t m0 x5 h5 y7 ff1 fs3 fc2 sc0 lsa ws1">Matlab<span class="ff2 sc3 lsb">运算的基本单元是实数或复数元素组成的长方</span></div><div class="t m0 x5 h5 y8 ff2 fs3 fc2 sc3 lsb ws1">形矩阵。标量和向量是特殊的矩阵,标量为<span class="ff1 sc0 lsc">1x1</span>阶矩</div><div class="t m0 x5 h6 y9 ff2 fs3 fc2 sc3 lsb ws1">阵,而向量是只有一行或一列的矩阵。从矩阵角度看,</div><div class="t m0 x5 h5 ya ff1 fs3 fc2 sc0 lsa ws1">Matlab<span class="ff2 sc3 lsb">中的运算和命令趋于自然表达形式。</span></div><div class="t m0 x5 h4 yb ff2 fs2 fc2 sc3 ls6 ws1">(<span class="ff1 sc0">1</span><span class="lsd">)<span class="_ _0"> </span>直接输入矩阵元素;</span></div><div class="t m0 x5 h4 yc ff2 fs2 fc2 sc3 ls6 ws1">(<span class="ff1 sc0">2</span><span class="lse">)<span class="_ _0"> </span>由所建立的语句和函数产生;</span></div><div class="t m0 x5 h4 yd ff2 fs2 fc2 sc3 ls6 ws1">(<span class="ff1 sc0">3</span><span class="ls3">)由</span><span class="ff1 sc0">M</span><span class="lsf">文件产生;</span></div><div class="t m0 x5 h4 ye ff2 fs2 fc2 sc3 ls6 ws1">(<span class="ff1 sc0">4</span><span class="lsf">)由外部的数据文件装入。</span></div><div class="t m0 x5 h4 yf ff1 fs2 fc0 sc0 ls10 ws3">1.1.1 <span class="ff2 sc1 lse ws1">简单矩阵的输入</span></div></div><div class="pi" data-data='{"ctm":[0.000000,-1.337047,1.337047,0.000000,-82.896936,758.105850]}'></div></div>
<div id="pf3" class="pf w0 h0" data-page-no="3"><div class="pc pc3 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/628678ba16e0ca7141ba17ea/bg3.jpg"><div class="t m0 x6 h7 y10 ff2 fs2 fc3 sc4 ls11 ws1">输入简单矩阵的最简单的方法是采用直<span class="_ _1"></span>接输<span class="_ _1"></span>入法<span class="fc2 sc3 ls12">。直接输入的元<span class="_ _1"></span>素<span class="fc1 sc2 ls6">用</span></span></div><div class="t m0 x6 h4 y11 ff2 fs2 fc1 sc2 ls13 ws1">空格或逗号隔开,用<span class="ff1 sc0 ls6">“</span><span class="ls6">;<span class="_ _2"></span><span class="ff1 sc0">”</span><span class="ls12">表示一行的结束<span class="fc2 sc3 ls14">,并用中括号<span class="_ _3"> </span><span class="ff1 sc0 ls15 ws4">[ ] </span><span class="ls3">将所有元</span></span></span></span></div><div class="t m0 x6 h7 y12 ff2 fs2 fc2 sc3 lse ws1">素括起来以形成矩阵。</div><div class="t m0 x7 h8 y13 ff3 fs4 fc2 sc0 ls16 ws5">A=[ 1<span class="ff2 ls6 ws1">,<span class="ff3">2</span>,<span class="ff3">3</span>;<span class="ff3">4</span>,<span class="ff3">5</span>,<span class="ff3">6</span>;<span class="ff3">7</span>,<span class="ff3">8</span>,</span><span class="ls17 ws6">9 ]</span></div><div class="t m0 x8 h8 y14 ff3 fs4 fc2 sc0 ls18 ws1">A=</div><div class="t m0 x9 h8 y15 ff3 fs4 fc2 sc0 ls18 ws7">1 2 3</div><div class="t m0 x9 h8 y16 ff3 fs4 fc2 sc0 ls18 ws7">4 5 6</div><div class="t m0 x9 h8 y17 ff3 fs4 fc2 sc0 ls17 ws6">7 8 9 </div><div class="t m0 xa h7 y18 ff2 fs2 fc2 sc3 lse ws1">例如:输入下面一句:</div><div class="t m0 xb h7 y19 ff2 fs2 fc2 sc3 ls4 ws1">输出结果为:</div><div class="t m0 x6 h7 y1a ff2 fs2 fc3 sc4 lse ws1">较大的矩阵可以分成若干行输入,以回车键</div><div class="t m0 x6 h4 y1b ff2 fs2 fc3 sc4 lse ws1">代替分号<span class="fc2 sc3 ls19">,例如上面的<span class="ff1 sc0 ls6">A</span><span class="lse">矩阵,可以用三行输</span></span></div><div class="t m0 x6 h7 y1c ff2 fs2 fc2 sc3 lse ws1">入表示:</div><div class="t m0 xc h8 y1d ff3 fs4 fc2 sc0 ls1a ws7">A=[ 1 2 3</div><div class="t m0 xd h8 y1e ff3 fs4 fc2 sc0 ls1b ws7">4 5 6</div><div class="t m0 xd h8 y1f ff3 fs4 fc2 sc0 ls1c ws8">7 8 9 ] </div><div class="t m0 x6 h4 y20 ff2 fs2 fc3 sc4 lsd ws1">矩阵可以从扩展名为<span class="_ _4"> </span><span class="ff1 sc0 ls1d">.m <span class="_ _5"></span></span><span class="ls1e">的磁盘文件中输入<span class="fc2 sc3 ls19">,例如,名叫<span class="_ _4"> </span><span class="ff1 sc0 ls1f">aa.m<span class="_ _4"> </span></span><span class="ls6">的</span></span></span></div><div class="t m0 x6 h4 y21 ff2 fs2 fc2 sc3 ls4 ws1">文件包含以上<span class="_ _4"> </span><span class="ff1 sc0 ls10">A <span class="_ _6"> </span></span><span class="ls1e">矩阵的三行,在<span class="_ _4"> </span><span class="ff1 sc0 ls20">Matlab<span class="_ _7"> </span></span><span class="lsf">的状态空间中运行<span class="_ _4"> </span><span class="ff1 sc0 ls21">aa</span><span class="ls6">,</span></span></span></div><div class="t m0 x6 h4 y22 ff2 fs2 fc2 sc3 lse ws1">则可输出<span class="_ _8"> </span><span class="ff1 sc0 ls10">A <span class="_ _9"></span></span><span class="ls7">矩阵。运行<span class="_ _8"> </span><span class="ff1 sc0 ls22">aa<span class="_ _8"> </span></span><span class="ls3">相当于将<span class="ff1 sc0 ls6">A<span class="_ _2"></span></span></span>矩阵调入到<span class="_ _8"> </span><span class="ff1 sc0 ls23">Matlab<span class="_ _4"> </span></span><span class="ls24">的状态</span></span></div><div class="t m0 x6 h7 y23 ff2 fs2 fc2 sc3 lse ws1">空间里。</div></div><div class="pi" data-data='{"ctm":[0.000000,-1.337047,1.337047,0.000000,-82.896936,758.105850]}'></div></div>
<div id="pf4" class="pf w0 h0" data-page-no="4"><div class="pc pc4 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/628678ba16e0ca7141ba17ea/bg4.jpg"><div class="t m0 x7 h5 y24 ff1 fs3 fc0 sc0 ls25 ws9">1.1.2 <span class="ff2 sc1 lsb ws1">矩阵元素</span></div><div class="t m0 xe h4 y25 ff2 fs2 fc2 sc3 lsf ws1">矩阵的元素可以是<span class="_ _0"> </span><span class="ff1 sc0 ls23">Matlab<span class="_"> </span></span><span class="ls26">表达式,例如:</span></div><div class="t m0 xf h8 y26 ff3 fs4 fc2 sc0 ls6 ws1">X<span class="ff2">=</span><span class="ls27 wsa">[ -1.3 sqrt(3) (1+2+3)*4/5 ]</span></div><div class="t m0 x10 h7 y27 ff2 fs2 fc2 sc3 lse ws1">结果为:</div><div class="t m0 x11 h8 y28 ff3 fs4 fc2 sc0 ls18 ws1">X=</div><div class="t m0 x12 h8 y29 ff3 fs4 fc2 sc0 ls27 wsa">-1.300 1.732 4.800</div><div class="t m0 x13 h7 y2a ff2 fs2 fc2 sc3 ls26 ws1">每个矩阵元素用圆括号及其中的下标值表示,例如上例中:</div><div class="t m0 x14 h8 y2b ff3 fs4 fc2 sc0 ls28 ws1">X(2)</div><div class="t m0 x15 h8 y2c ff3 fs4 fc2 sc0 ls28 ws1">ans=</div><div class="t m0 x16 h8 y2d ff3 fs4 fc2 sc0 ls29 ws1">1.7321</div><div class="t m0 x17 h8 y2e ff3 fs4 fc2 sc0 ls6 ws1">B=X(3)</div><div class="t m0 x18 h8 y2b ff3 fs4 fc2 sc0 ls18 ws1">B=</div><div class="t m0 x19 h8 y2f ff3 fs4 fc2 sc0 ls29 ws1">4.8000</div><div class="t m0 x1a h9 y30 ff2 fs4 fc2 sc3 ls2a ws1">若继续给出:</div><div class="t m0 x1a ha y31 ff1 fs4 fc2 sc0 ls27 ws1">X(5)=abs(X(1))</div><div class="t m0 x1b ha y32 ff2 fs4 fc2 sc3 ls6 ws1">则<span class="ff1 sc0">X</span><span class="ls2a">的结果为:</span></div><div class="t m0 x1b h8 y31 ff3 fs4 fc2 sc0 ls18 ws1">X=</div><div class="t m0 x1c h8 y33 ff3 fs4 fc2 sc0 ls6 wsb">-1.3000 1.7321 4.800 0.0000 1.3000</div><div class="t m0 x6 h4 y34 ff2 fs2 fc2 sc3 ls7 ws1">注意,矩阵<span class="ff1 sc0 ls6">X</span><span class="lse">的大小将自动与新输入的元素相适应,而矩阵中没有定义</span></div><div class="t m0 x6 h7 y35 ff2 fs2 fc2 sc3 lsf ws1">的中间元素按置零处理。</div></div><div class="pi" data-data='{"ctm":[0.000000,-1.337047,1.337047,0.000000,-82.896936,758.105850]}'></div></div>
<div id="pf5" class="pf w0 h0" data-page-no="5"><div class="pc pc5 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/628678ba16e0ca7141ba17ea/bg5.jpg"><div class="t m0 x3 h4 y36 ff2 fs2 fc2 sc3 lse ws1">在组成较大矩阵时,可以将小矩阵作为它的元素,例如已经输入<span class="ff1 sc0 ls6">A</span><span class="lsf">矩阵为:</span></div><div class="t m0 x11 h8 y37 ff3 fs4 fc2 sc0 ls16 ws5">A=[ 1<span class="ff2 ls6 ws1">,<span class="ff3">2</span>,<span class="ff3">3</span>;<span class="ff3">4</span>,<span class="ff3">5</span>,<span class="ff3">6</span>;<span class="ff3">7</span>,<span class="ff3">8</span>,</span><span class="ls17 ws6">9 ]</span></div><div class="t m0 x3 h4 y38 ff2 fs2 fc2 sc3 ls3 ws1">若在<span class="ff1 sc0 ls6">A</span><span class="lsf">矩阵中附加一行:</span></div><div class="t m0 x1d h8 y39 ff3 fs4 fc2 sc0 ls16 ws1">A=[A<span class="ff2 ls6">;</span><span class="ls1b">[10<span class="ff2 ls6">,</span><span class="ls2b">11<span class="ff2 ls6">,</span></span><span class="ws7">12] ]</span></span></div><div class="t m0 x1e h8 y3a ff3 fs4 fc2 sc0 ls1b ws1">A=</div><div class="t m0 x1f h8 y3b ff3 fs4 fc2 sc0 ls1b wsc">1 2 3</div><div class="t m0 x1f h8 y3c ff3 fs4 fc2 sc0 ls1b wsc">4 5 6</div><div class="t m0 x1f h8 y3d ff3 fs4 fc2 sc0 ls2c ws5">7 8 9 </div><div class="t m0 x1f h8 y3e ff3 fs4 fc2 sc0 ls27 wsa">10 11 12</div><div class="t m0 x20 h4 y3f ff2 fs2 fc1 sc2 ls3 ws1">冒号<span class="ff1 sc0 ls6">“</span><span class="ls6">:<span class="ff1 sc0">”</span><span class="ls24">的使用<span class="fc2 sc3 ls2d">,可以从大矩阵中提取小矩阵,例如:</span></span></span></div><div class="t m0 x21 h8 y40 ff3 fs4 fc2 sc0 ls18 ws1">B=A(1<span class="ff2 ls6">:<span class="ff3">3</span>,:<span class="ff3">)</span></span></div><div class="t m0 x22 h8 y41 ff3 fs4 fc2 sc0 ls18 ws1">B=</div><div class="t m0 x23 h8 y42 ff3 fs4 fc2 sc0 ls18 wsc">1 2 3</div><div class="t m0 x23 h8 y43 ff3 fs4 fc2 sc0 ls18 wsc">4 5 6</div><div class="t m0 x23 h8 y44 ff3 fs4 fc2 sc0 ls27 wsc">7 8 9 </div></div><div class="pi" data-data='{"ctm":[0.000000,-1.337047,1.337047,0.000000,-82.896936,758.105850]}'></div></div>