orjson是一个快速的Python JSON库-python

  • n4_779318
    了解作者
  • 872.3KB
    文件大小
  • zip
    文件格式
  • 0
    收藏次数
  • VIP专享
    资源类型
  • 0
    下载次数
  • 2022-05-14 02:51
    上传日期
orjson是一个快速的Python JSON库。 它基准测试是最快的用于JSON序列化的Python库,其性能是最近的其他库的1.6倍到2.6倍,反序列化性能是最近的其他库的0.95倍到1.2倍。
ijl-orjson.zip
内容介绍
# orjson orjson is a fast, correct JSON library for Python. It [benchmarks](https://github.com/ijl/orjson#performance) as the fastest Python library for JSON and is more correct than the standard json library or other third-party libraries. It serializes [dataclass](https://github.com/ijl/orjson#dataclass), [datetime](https://github.com/ijl/orjson#datetime), [numpy](https://github.com/ijl/orjson#numpy), and [UUID](https://github.com/ijl/orjson#uuid) instances natively. Its features and drawbacks compared to other Python JSON libraries: * serializes `dataclass` instances 40-50x as fast as other libraries * serializes `datetime`, `date`, and `time` instances to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00" * serializes `numpy.ndarray` instances 4-12x as fast with 0.3x the memory usage of other libraries * pretty prints 10x to 20x as fast as the standard library * serializes to `bytes` rather than `str`, i.e., is not a drop-in replacement * serializes `str` without escaping unicode to ASCII, e.g., "好" rather than "\\\u597d" * serializes `float` 10x as fast and deserializes twice as fast as other libraries * serializes subclasses of `str`, `int`, `list`, and `dict` natively, requiring `default` to specify how to serialize others * serializes arbitrary types using a `default` hook * has strict UTF-8 conformance, more correct than the standard library * has strict JSON conformance in not supporting Nan/Infinity/-Infinity * has an option for strict JSON conformance on 53-bit integers with default support for 64-bit * does not provide `load()` or `dump()` functions for reading from/writing to file-like objects orjson supports CPython 3.6, 3.7, 3.8, 3.9, and 3.10. It distributes x86_64/amd64 and aarch64/armv8 wheels for Linux and macOS. It distributes x86_64/amd64 wheels for Windows. orjson does not support PyPy. Releases follow semantic versioning and serializing a new object type without an opt-in flag is considered a breaking change. orjson is licensed under both the Apache 2.0 and MIT licenses. The repository and issue tracker is [github.com/ijl/orjson](https://github.com/ijl/orjson), and patches may be submitted there. There is a [CHANGELOG](https://github.com/ijl/orjson/blob/master/CHANGELOG.md) available in the repository. 1. [Usage](https://github.com/ijl/orjson#usage) 1. [Install](https://github.com/ijl/orjson#install) 2. [Quickstart](https://github.com/ijl/orjson#quickstart) 3. [Migrating](https://github.com/ijl/orjson#migrating) 4. [Serialize](https://github.com/ijl/orjson#serialize) 1. [default](https://github.com/ijl/orjson#default) 2. [option](https://github.com/ijl/orjson#option) 5. [Deserialize](https://github.com/ijl/orjson#deserialize) 2. [Types](https://github.com/ijl/orjson#types) 1. [dataclass](https://github.com/ijl/orjson#dataclass) 2. [datetime](https://github.com/ijl/orjson#datetime) 3. [enum](https://github.com/ijl/orjson#enum) 4. [float](https://github.com/ijl/orjson#float) 5. [int](https://github.com/ijl/orjson#int) 6. [numpy](https://github.com/ijl/orjson#numpy) 7. [str](https://github.com/ijl/orjson#str) 8. [uuid](https://github.com/ijl/orjson#uuid) 3. [Testing](https://github.com/ijl/orjson#testing) 4. [Performance](https://github.com/ijl/orjson#performance) 1. [Latency](https://github.com/ijl/orjson#latency) 2. [Memory](https://github.com/ijl/orjson#memory) 3. [Reproducing](https://github.com/ijl/orjson#reproducing) 5. [Questions](https://github.com/ijl/orjson#questions) 6. [Packaging](https://github.com/ijl/orjson#packaging) 7. [License](https://github.com/ijl/orjson#license) ## Usage ### Install To install a wheel from PyPI: ```sh pip install --upgrade "pip>=19.3" # manylinux2014 support pip install --upgrade orjson ``` Notice that Linux environments with a `pip` version shipped in 2018 or earlier must first upgrade `pip` to support `manylinux2014` wheels. To build a wheel, see [packaging](https://github.com/ijl/orjson#packaging). ### Quickstart This is an example of serializing, with options specified, and deserializing: ```python >>> import orjson, datetime, numpy >>> data = { "type": "job", "created_at": datetime.datetime(1970, 1, 1), "status": "🆗", "payload": numpy.array([[1, 2], [3, 4]]), } >>> orjson.dumps(data, option=orjson.OPT_NAIVE_UTC | orjson.OPT_SERIALIZE_NUMPY) b'{"type":"job","created_at":"1970-01-01T00:00:00+00:00","status":"\xf0\x9f\x86\x97","payload":[[1,2],[3,4]]}' >>> orjson.loads(_) {'type': 'job', 'created_at': '1970-01-01T00:00:00+00:00', 'status': '🆗', 'payload': [[1, 2], [3, 4]]} ``` ### Migrating orjson version 3 serializes more types than version 2. Subclasses of `str`, `int`, `dict`, and `list` are now serialized. This is faster and more similar to the standard library. It can be disabled with `orjson.OPT_PASSTHROUGH_SUBCLASS`.`dataclasses.dataclass` instances are now serialized by default and cannot be customized in a `default` function unless `option=orjson.OPT_PASSTHROUGH_DATACLASS` is specified. `uuid.UUID` instances are serialized by default. For any type that is now serialized, implementations in a `default` function and options enabling them can be removed but do not need to be. There was no change in deserialization. To migrate from the standard library, the largest difference is that `orjson.dumps` returns `bytes` and `json.dumps` returns a `str`. Users with `dict` objects using non-`str` keys should specify `option=orjson.OPT_NON_STR_KEYS`. `sort_keys` is replaced by `option=orjson.OPT_SORT_KEYS`. `indent` is replaced by `option=orjson.OPT_INDENT_2` and other levels of indentation are not supported. ### Serialize ```python def dumps( __obj: Any, default: Optional[Callable[[Any], Any]] = ..., option: Optional[int] = ..., ) -> bytes: ... ``` `dumps()` serializes Python objects to JSON. It natively serializes `str`, `dict`, `list`, `tuple`, `int`, `float`, `bool`, `dataclasses.dataclass`, `typing.TypedDict`, `datetime.datetime`, `datetime.date`, `datetime.time`, `uuid.UUID`, `numpy.ndarray`, and `None` instances. It supports arbitrary types through `default`. It serializes subclasses of `str`, `int`, `dict`, `list`, `dataclasses.dataclass`, and `enum.Enum`. It does not serialize subclasses of `tuple` to avoid serializing `namedtuple` objects as arrays. To avoid serializing subclasses, specify the option `orjson.OPT_PASSTHROUGH_SUBCLASS`. The output is a `bytes` object containing UTF-8. The global interpreter lock (GIL) is held for the duration of the call. It raises `JSONEncodeError` on an unsupported type. This exception message describes the invalid object with the error message `Type is not JSON serializable: ...`. To fix this, specify [default](https://github.com/ijl/orjson#default). It raises `JSONEncodeError` on a `str` that contains invalid UTF-8. It raises `JSONEncodeError` on an integer that exceeds 64 bits by default or, with `OPT_STRICT_INTEGER`, 53 bits. It raises `JSONEncodeError` if a `dict` has a key of a type other than `str`, unless `OPT_NON_STR_KEYS` is specified. It raises `JSONEncodeError` if the output of `default` recurses to handling by `default` more than 254 levels deep. It raises `JSONEncodeError` on circular references. It raises `JSONEncodeError` if a `tzinfo` on a datetime object is unsupported. `JSONEncodeError` is a subclass of `TypeError`. This is for compatibility with the standard library. #### default To serialize a subclass or arbitrary types, specify `default` as a callable that returns a supported type. `default` may be a function, lambda, or callable class instance. To specify that a type was not handled by `default`, raise an exception such as `TypeError`. ```python >>> import orjson, decimal >>> def default(obj): if isinstance(obj, decimal.Decimal): return str(obj) raise TypeError >>> orjson.dumps(decimal.Decimal("0.0842389659712649442845")) JSONEncodeError: Type is not JSON seri
评论
    相关推荐