基恩士PLC算法分类.zip

  • e5_500965
    了解作者
  • 158.4KB
    文件大小
  • zip
    文件格式
  • 0
    收藏次数
  • VIP专享
    资源类型
  • 0
    下载次数
  • 2022-05-19 08:05
    上传日期
基恩士PLC算法分类zip,基恩士PLC算法介绍
A-BE25-B9EEB98E77A1.zip
  • vol1.ldr
    792B
  • vol21.ldr
    2.4KB
  • basic_course_01.pdf
    62.8KB
  • basic_course_21.pdf
    82.3KB
  • vol15.ldr
    710B
  • basic_course_15.pdf
    52.5KB
内容介绍
<html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta charset="utf-8"> <meta name="generator" content="pdf2htmlEX"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css"> <link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css"> <link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/628589d55172510b0c62ba12/raw.css"> <script src="https://static.pudn.com/base/js/compatibility.min.js"></script> <script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script> <script> try{ pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({}); }catch(e){} </script> <title></title> </head> <body> <div id="sidebar" style="display: none"> <div id="outline"> </div> </div> <div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/628589d55172510b0c62ba12/bg1.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">VOL.</div><div class="t m1 x2 h3 y2 ff2 fs1 fc1 sc0 ls1 ws0">Example</div><div class="t m2 x3 h4 y3 ff2 fs2 fc0 sc0 ls2 ws0">To<span class="_ _0"></span>p</div><div class="t m2 x4 h4 y4 ff2 fs2 fc0 sc0 ls3 ws0">Bac<span class="_ _1"></span>k</div><div class="t m2 x5 h4 y5 ff2 fs2 fc0 sc0 ls4 ws1">Contact Us</div><div class="t m0 x6 h5 y6 ff3 fs3 fc1 sc0 ls5 ws0">Sor<span class="_ _2"></span>ting</div><div class="t m0 x7 h2 y7 ff1 fs0 fc0 sc0 ls6 ws0">21</div><div class="t m3 x6 h6 y8 ff2 fs4 fc1 sc0 ls4 ws0">Sor<span class="_ _3"></span>ting machines in the ascending or<span class="_ _4"></span>der of pr<span class="_ _1"></span>oduction</div><div class="t m4 x8 h7 y9 ff4 fs5 fc1 sc0 ls4 ws2">In the production site with multiple-injection molding machines<span class="_ _4"></span>, the Visual KV Series counts the number of molded</div><div class="t m4 x8 h7 ya ff4 fs5 fc1 sc0 ls4 ws3">products of each machine.<span class="_ _4"></span> <span class="_ _4"></span>The resulting with count can be used to determine the machine of low production.</div><div class="t m4 x8 h7 yb ff4 fs5 fc1 sc0 ls4 ws3"> *<span class="_ _5"> </span>This example uses 5 machines f<span class="_ _4"></span>or simplification.<span class="_ _4"></span> <span class="_ _4"></span>This application is more eff<span class="_ _4"></span>ective with a greater number of</div><div class="t m4 x9 h7 yc ff4 fs5 fc1 sc0 ls7 ws0">machines.</div><div class="t m4 x8 h8 yd ff5 fs6 fc1 sc0 ls4 ws0">&#9632;<span class="_ _6"> </span><span class="ff2 ws4">Pr<span class="_ _1"></span>ogramming T<span class="_ _7"></span>echnique</span></div><div class="t m4 x8 h7 ye ff4 fs5 fc1 sc0 ls4 ws5">Prepare data memories for each machine to register the machine No<span class="_ _7"></span>.<span class="_ _4"></span> and the count value.<span class="_ _7"></span> (Example:<span class="_ _4"></span> Machine 1:</div><div class="t m4 x8 h7 yf ff4 fs5 fc1 sc0 ls4 ws0">DM0011 f<span class="_ _1"></span>or machine No<span class="_ _4"></span>., DM0001 for count v<span class="_ _4"></span>alue)</div><div class="t m4 x8 h7 y10 ff4 fs5 fc1 sc0 ls4 ws3">The sor<span class="_ _3"></span>ting uses these data memories.</div><div class="t m4 x8 h9 y11 ff2 fs7 fc1 sc0 ls4 ws6">The large/small comparison of all tar<span class="_ _1"></span>get data memories is repeated and the data memo-</div><div class="t m4 x8 h9 y12 ff2 fs7 fc1 sc0 ls4 ws7">ries are sorted.</div><div class="t m4 x8 h7 y13 ff4 fs5 fc1 sc0 ls4 ws8">Flow chart of large/small compar<span class="_ _3"></span>ison</div><div class="t m4 x8 h7 y14 ff4 fs5 fc1 sc0 ls4 ws3">It is con<span class="_ _1"></span>venient to use the indirect addressing with tempor<span class="_ _1"></span>ar<span class="_ _3"></span>y data memor<span class="_ _3"></span>y in order to specify the data memor<span class="_ _3"></span>y</div><div class="t m4 x8 h7 y15 ff4 fs5 fc1 sc0 ls4 ws9">number (*).</div><div class="t m4 xa ha y16 ff4 fs8 fc1 sc0 ls4 ws0">C001=#2500</div><div class="t m4 xa ha y17 ff4 fs8 fc1 sc0 ls4 ws0">C002=#2200</div><div class="t m4 xa ha y18 ff4 fs8 fc1 sc0 ls4 ws0">C003=#2400</div><div class="t m4 xa ha y19 ff4 fs8 fc1 sc0 ls4 ws0">C004=#2100</div><div class="t m4 xa ha y1a ff4 fs8 fc1 sc0 ls4 ws0">C005=#2300</div><div class="t m4 xb ha y17 ff4 fs8 fc1 sc0 ls4 ws0">DM0012=#0002: DM0002=#2200</div><div class="t m4 xb ha y18 ff4 fs8 fc1 sc0 ls4 ws0">DM0013=#0005: DM0003=#2300</div><div class="t m4 xb ha y19 ff4 fs8 fc1 sc0 ls4 ws0">DM0014=#0003: DM0004=#2400</div><div class="t m4 xb ha y1a ff4 fs8 fc1 sc0 ls4 ws0">DM0015=#0001: DM0005=#2500</div><div class="t m4 xb ha y1b ff4 fs8 fc1 sc0 ls4 ws0">DM0011=#0004: DM0001=#2100</div><div class="t m4 xa ha y1c ff4 fs8 fc1 sc0 ls4 wsa">&lt;Before sorting&gt;</div><div class="t m4 xc ha y1d ff4 fs8 fc1 sc0 ls8 wsb">&lt;After sor<span class="_ _3"></span>ting&gt;</div><div class="t m4 xd ha y1e ff4 fs8 fc1 sc0 ls4 wsc">Machine No<span class="_ _4"></span>.</div><div class="t m4 xe ha y1f ff4 fs8 fc1 sc0 ls4 wsd">Count value</div><div class="t m4 xf ha y20 ff4 fs8 fc1 sc0 ls4 wse">Machine 1</div><div class="t m4 xf ha y21 ff4 fs8 fc1 sc0 ls4 wse">Machine 2</div><div class="t m4 xf ha y22 ff4 fs8 fc1 sc0 ls4 wse">Machine 3</div><div class="t m4 xf ha y23 ff4 fs8 fc1 sc0 ls4 wse">Machine 4</div><div class="t m4 xf ha y24 ff4 fs8 fc1 sc0 ls8 wse">Machine 5<span class="_ _8"> </span>High</div><div class="t m4 x10 ha y25 ff4 fs8 fc1 sc0 ls9 ws0">Low</div><div class="t m5 x11 hb y26 ff4 fs9 fc1 sc0 ls4 ws0">DM(*)&gt;DM(*+1)</div><div class="t m5 x12 hc y27 ff4 fs9 fc1 sc0 ls4 ws0">DM(*)<span class="ff6">&#8804;</span>DM(*+1)</div><div class="t m5 x13 hb y28 ff4 fs9 fc1 sc0 ls4 ws0">DM(*): DM0001 to DM0005 </div><div class="t m5 x14 hc y27 ff4 fs9 fc1 sc0 ls4 ws0">(*+1)<span class="ff6">&#8804;</span>5</div><div class="t m5 x15 hb y29 ff4 fs9 fc1 sc0 ls4 ws0">(*+1)&gt;5</div><div class="t m2 x16 ha y2a ff4 fs8 fc1 sc0 lsa ws0">Star<span class="_ _3"></span>t</div><div class="t m2 x17 ha y2b ff4 fs8 fc1 sc0 ls4 wsf">Compares the data of DM (*) with DM (*+1)</div><div class="t m2 x18 ha y2c ff4 fs8 fc1 sc0 ls4 ws10">Switches the data and machine Nos.<span class="_ _7"></span> in DM</div><div class="t m2 x18 ha y2d ff4 fs8 fc1 sc0 ls4 ws10">(*) and DM (*+1).</div><div class="t m2 x18 ha y2e ff4 fs8 fc1 sc0 ls4 ws0">Compares the new data in DM (*) with the</div><div class="t m2 x18 ha y2f ff4 fs8 fc1 sc0 ls4 ws11">data in DM (*-1).<span class="_ _4"></span> Repeats the comparison</div><div class="t m2 x18 ha y30 ff4 fs8 fc1 sc0 ls4 ws12">until the data memor<span class="_ _3"></span>y number (*) becomes</div><div class="t m2 x18 ha y31 ff4 fs8 fc1 sc0 ls4 ws13">the initial number (0001).</div><div class="t m2 x19 ha y32 ff4 fs8 fc1 sc0 lsb ws0">End</div><div class="t m2 x1a ha y2c ff4 fs8 fc1 sc0 ls4 ws14">Repeats the comparison until the data memor<span class="_ _3"></span>y</div><div class="t m2 x1a ha y2d ff4 fs8 fc1 sc0 ls8 ws14">number (*+1) becomes the last number (0005).</div><div class="t m1 x8 h3 y33 ff2 fs1 fc1 sc0 lsc ws0">Outline</div><div class="d m6"></div><div class="d m6"></div><div class="d m6"></div><div class="d m6"></div><div class="d m6"></div><div class="d m6"></div></div><div class="pi" data-data='{"ctm":[1.613445,0.000000,0.000000,1.613445,0.000000,0.000000]}'></div></div> </body> </html>
评论
    相关推荐
    • 协同表示分类算法
      协同表示分类算法,代码完整,可以直接运行,可用于各种模式识别分类问题。
    • 贝叶斯分类算法
      贝叶斯分类算法,使用B/S模式实现,通过用户在客户端选择条件,自动计算出结果
    • 很好的SVM分类算法
      这是一个很好的SVM分类算法,可以对要进行分类的特征进行识别。
    • Bayes分类算法
      Bayes分类算法,用Python实现,在两个小数据集上准确率为97%和88%,代码简单,适合学习
    • 文本分类算法.rar
      一个很简单的文本分类算法 使用方法: 命令行参数: -t 文本文件路径 -m 你的模型文件路径 -c 可选,类别(hit 或 miss) 如果提供了-c则用于训练,否则被模型分类,输出该文本的类型(hit或miss)
    • Bayes分类算法 VC实现
      Bayes分类算法 VC实现 程序源代码
    • 多重信号分类算法
      可进行波达方向估计(DOA),高分辨率现代谱估计等。
    • 分类:不同分类算法的实现
      分类 不同分类算法的实现
    • 线性分类算法
      SVM的简单数据分类N1=440; for i=1:N1 x1(1,i)=-1.7+0.9*randn(1); x1(2,i)= 1.6+0.7*randn(1); end; N2=400; for i=1:N2 x2(1,i)= 1.3+0.9*randn(1); x2(2,i)=-1.5+0.7*randn(1); end;
    • HADOOP分类算法
      HADOOP分类算法还有Hadoop聚类算法,可以继续搜索