opencv内置各种分类器

  • H8_157784
    了解作者
  • 1.4MB
    文件大小
  • zip
    文件格式
  • 0
    收藏次数
  • VIP专享
    资源类型
  • 0
    下载次数
  • 2022-05-20 11:52
    上传日期
opencv内置人脸识别分类器,对于个人进行人脸检测,更换不同的分类器可得到不同的效果
haarcascades.zip
  • haarcascades
  • haarcascade_eye_tree_eyeglasses.xml
    587.6KB
  • haarcascade_righteye_2splits.xml
    191.6KB
  • haarcascade_fullbody.xml
    465.6KB
  • haarcascade_frontalface_alt.xml
    660.8KB
  • haarcascade_eye.xml
    333.4KB
  • haarcascade_frontalcatface_extended.xml
    352.8KB
  • haarcascade_licence_plate_rus_16stages.xml
    46.7KB
  • haarcascade_frontalcatface.xml
    369.7KB
  • haarcascade_smile.xml
    184.2KB
  • haarcascade_upperbody.xml
    767.4KB
  • haarcascade_frontalface_default.xml
    908.3KB
  • haarcascade_russian_plate_number.xml
    73.7KB
  • haarcascade_lefteye_2splits.xml
    190.8KB
  • haarcascade_frontalface_alt_tree.xml
    2.6MB
  • haarcascade_profileface.xml
    809.1KB
  • haarcascade_lowerbody.xml
    386.1KB
  • haarcascade_frontalface_alt2.xml
    527.9KB
内容介绍
<?xml version="1.0"?> <!-- Stump-based 20x20 gentle adaboost frontal face detector. This detector uses tree of stage classifiers instead of a cascade Created by Rainer Lienhart. //////////////////////////////////////////////////////////////////////////////////////// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. By downloading, copying, installing or using the software you agree to this license. If you do not agree to this license, do not download, install, copy or use the software. Intel License Agreement For Open Source Computer Vision Library Copyright (C) 2000, Intel Corporation, all rights reserved. Third party copyrights are property of their respective owners. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistribution's of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistribution's in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * The name of Intel Corporation may not be used to endorse or promote products derived from this software without specific prior written permission. This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the Intel Corporation or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage. --> <opencv_storage> <cascade type_id="opencv-cascade-classifier"><stageType>BOOST</stageType> <featureType>HAAR</featureType> <height>20</height> <width>20</width> <stageParams> <maxWeakCount>406</maxWeakCount></stageParams> <featureParams> <maxCatCount>0</maxCatCount></featureParams> <stageNum>47</stageNum> <stages> <_> <maxWeakCount>3</maxWeakCount> <stageThreshold>-1.3442519903182983e+00</stageThreshold> <weakClassifiers> <_> <internalNodes> 0 -1 0 3.7895569112151861e-03</internalNodes> <leafValues> -9.2945802211761475e-01 6.4119851589202881e-01</leafValues></_> <_> <internalNodes> 0 -1 1 1.2098110280930996e-02</internalNodes> <leafValues> -7.1810090541839600e-01 4.7141009569168091e-01</leafValues></_> <_> <internalNodes> 0 -1 2 1.2138449819758534e-03</internalNodes> <leafValues> -7.2831612825393677e-01 3.0330690741539001e-01</leafValues></_></weakClassifiers></_> <_> <maxWeakCount>9</maxWeakCount> <stageThreshold>-1.6378560066223145e+00</stageThreshold> <weakClassifiers> <_> <internalNodes> 0 -1 3 8.7510552257299423e-03</internalNodes> <leafValues> -8.5947072505950928e-01 3.6881381273269653e-01</leafValues></_> <_> <internalNodes> 0 -1 4 2.1986700594425201e-02</internalNodes> <leafValues> -6.0180151462554932e-01 3.2897830009460449e-01</leafValues></_> <_> <internalNodes> 0 -1 5 6.4913398819044232e-04</internalNodes> <leafValues> -7.9431951045989990e-01 2.5493299961090088e-01</leafValues></_> <_> <internalNodes> 0 -1 6 -1.0192029876634479e-03</internalNodes> <leafValues> 2.2729329764842987e-01 -6.3627982139587402e-01</leafValues></_> <_> <internalNodes> 0 -1 7 1.3674780493602157e-03</internalNodes> <leafValues> -6.0014182329177856e-01 2.4118369817733765e-01</leafValues></_> <_> <internalNodes> 0 -1 8 1.0245250305160880e-03</internalNodes> <leafValues> -5.8542472124099731e-01 1.2550109624862671e-01</leafValues></_> <_> <internalNodes> 0 -1 9 1.8465859815478325e-02</internalNodes> <leafValues> 1.9563560187816620e-01 -6.7630231380462646e-01</leafValues></_> <_> <internalNodes> 0 -1 10 4.0901508182287216e-03</internalNodes> <leafValues> -4.4916498661041260e-01 2.6677688956260681e-01</leafValues></_> <_> <internalNodes> 0 -1 11 1.1358099989593029e-02</internalNodes> <leafValues> 1.8783229589462280e-01 -6.1379361152648926e-01</leafValues></_></weakClassifiers></_> <_> <maxWeakCount>16</maxWeakCount> <stageThreshold>-1.7317579984664917e+00</stageThreshold> <weakClassifiers> <_> <internalNodes> 0 -1 12 -1.1588949710130692e-02</internalNodes> <leafValues> 3.4567040205001831e-01 -7.6478981971740723e-01</leafValues></_> <_> <internalNodes> 0 -1 13 5.1809530705213547e-03</internalNodes> <leafValues> 2.4104920029640198e-01 -6.9623559713363647e-01</leafValues></_> <_> <internalNodes> 0 -1 14 2.1468549966812134e-03</internalNodes> <leafValues> -8.0553662776947021e-01 1.9838610291481018e-01</leafValues></_> <_> <internalNodes> 0 -1 15 -3.6556499544531107e-03</internalNodes> <leafValues> -7.1833139657974243e-01 1.2305679917335510e-01</leafValues></_> <_> <internalNodes> 0 -1 16 -1.9701640121638775e-03</internalNodes> <leafValues> 2.2777689993381500e-01 -4.7520169615745544e-01</leafValues></_> <_> <internalNodes> 0 -1 17 -3.3645539078861475e-03</internalNodes> <leafValues> -4.6095049381256104e-01 2.0394650101661682e-01</leafValues></_> <_> <internalNodes> 0 -1 18 -7.4126059189438820e-05</internalNodes> <leafValues> 1.8213239312171936e-01 -4.7829270362854004e-01</leafValues></_> <_> <internalNodes> 0 -1 19 -1.7571110278367996e-02</internalNodes> <leafValues> -7.1737551689147949e-01 1.1311130225658417e-01</leafValues></_> <_> <internalNodes> 0 -1 20 6.3840472139418125e-03</internalNodes> <leafValues> -4.0205681324005127e-01 2.0730289816856384e-01</leafValues></_> <_> <internalNodes> 0 -1 21 -1.4723399654030800e-02</internalNodes> <leafValues> -6.7558771371841431e-01 6.8973086774349213e-02</leafValues></_> <_> <internalNodes> 0 -1 22 -5.2889222279191017e-03</internalNodes> <leafValues> -6.2105172872543335e-01 1.3349360227584839e-01</leafValues></_> <_> <internalNodes> 0 -1 23 2.7743630111217499e-02</internalNodes> <leafValues> 1.1760850250720978e-01 -5.4641121625900269e-01</leafValues></_> <_> <internalNodes> 0 -1 24 3.9427559822797775e-02</internalNodes> <leafValues> -2.1134279668331146e-01 3.9452999830245972e-01</leafValues></_> <_> <internalNodes> 0 -1 25 8.6949411779642105e-03</internalNodes> <leafValues>
评论
    相关推荐
    • opencv汽车分类训练正负样本
      opencv汽车分类训练正负样本,其中正样本516张,负样本1045张,从视频上手工抠图下来的,可以用来做车辆分类训练测试,低分提供给大家,欢迎实验
    • opencv 分类
      OPCV分类,可以做图片分类参考。
    • googlenet图像分类opencv源码.rar
      里面保护全部东西,bvlc_googlenet.caffemodel,bvlc_googlenet.prototxt,synset_words.txt, 还有源码
    • OpenCV人检测分类
      opencv中haar+Adaboost已经训练好的分类器。有双目、身体等等,出自专家之手,必属精品,CV 1.0版本。
    • opencv人眼检测分类
      opencv 人眼检测 分类器 harropencv 人眼检测 分类器 harropencv 人眼检测 分类器 harropencv 人眼检测 分类器 harropencv 人眼检测 分类器 harropencv 人眼检测 分类器 harropencv 人眼检测 分类器 harr
    • OpenCV - 训练分类
      OpenCV - 训练分类
    • Opencv和图像分类
      使用Opencv进行图像分类的应用程序,对图像的区分程度不错。
    • OpenCV分类训练器
      用窗口界面形式运行OpenCV分类器,参数只需设置即可, 此文件为源码
    • OpenCV
      OpenCV 特征检测,分类器图像
    • GaussDB_100_1.0.1-DATABASE-REDHAT-64bit.tar.gz
      guassdb100在redhat上安装包,单机部署的包,安装步骤请看我的文中介绍,经过大量实验搭建总结出来的文档