strava:开心地从Strava绘制我的活动数据!

  • B7_499994
    了解作者
  • 14.8MB
    文件大小
  • zip
    文件格式
  • 0
    收藏次数
  • VIP专享
    资源类型
  • 0
    下载次数
  • 2022-05-21 11:03
    上传日期
Strava 很从绘制我的活动数据! 依存关系 大多数依赖项在环境文件中列出: 。 其他依赖项在conda中不可用: 开发版本 设置 按照中的生成API令牌以访问您的strava数据。 一旦将API令牌作为R数据文件缓存在.httr-oath ,就可以运行此工作流程了。 确保不要将令牌提交到GitHub! 工作流程 运行一切: snakemake 有关如何使用snakemake的更多信息,请参见。 查看工作流程DAG: snakemake -n --forceall --dag | dot -Tsvg > figures/dag.svg 呈现到目录:在查看呈现的html。 样例图 查看目录中的所有图
strava-master.zip
  • strava-master
  • figures
  • heatmap_calendar.png
    123.9KB
  • point_grid_speed_dist.png
    306.9KB
  • plot_summary_4_weeks.png
    60.6KB
  • heatmap_calendar_year.png
    55.4KB
  • line_plot_month_time.png
    262.1KB
  • point_run_pace.png
    330.4KB
  • bar_all_week.png
    113.1KB
  • point_dist_time_facet.png
    218.4KB
  • jitter_type_dist_log2.png
    391.6KB
  • bar_all_month.png
    102.4KB
  • bar_all_day.png
    119.2KB
  • jitter_type_dist.png
    272.4KB
  • README.md
    1.1KB
  • bar_sum_dist.png
    106.1KB
  • line_plot_month_dist.png
    294.6KB
  • jitter_time_year.png
    346.8KB
  • bar_2019.png
    79.7KB
  • box_weekday_dist_wrap.png
    93.6KB
  • line_dist.png
    156.6KB
  • bar_time_last_4_weeks.png
    40.7KB
  • line_time.png
    165.5KB
  • jitter_dist_year.png
    337.8KB
  • box_weekday_time.png
    85KB
  • bar_2017.png
    58.7KB
  • point_dist_time_log2.png
    263.4KB
  • point_ride_dist.png
    317.1KB
  • bar_dist_last_4_weeks.png
    35.2KB
  • jitter_grid_speed_pace.png
    382.9KB
  • time_nye_2020.png
    67.5KB
  • line_time_nye_2020.png
    103.1KB
  • point_ride_run_grid.png
    792.5KB
  • jitter_weekday_time_grid.png
    526.7KB
  • bar_time_last_12_mo.png
    82.9KB
  • bar_2018.png
    62.6KB
  • point_ride_grid.png
    507.9KB
  • dag.svg
    5.7KB
  • point_run_grid.png
    526.9KB
  • point_ride_speed.png
    329.2KB
  • dist_nye_2020.png
    53.7KB
  • jitter_type_time.png
    336.1KB
  • point_run_dist.png
    318.4KB
  • bar_2021.png
    50.2KB
  • jitter_weekday_dist_grid.png
    456.5KB
  • bar_sum_hrs.png
    126.4KB
  • bar_2020.png
    91KB
  • .github
  • workflows
  • auto-update.yml
    1.2KB
  • data
  • processed
  • activities.csv
    998.6KB
  • summary.csv
    903B
  • raw
  • activities.csv
    906.7KB
  • code
  • make_plots_summary.R
    3.1KB
  • update.sh
    119B
  • utils.R
    3.7KB
  • read_processed_data.R
    465B
  • ggplot_calendar_heatmap.R
    7.7KB
  • make_plots_activities.R
    29.7KB
  • launch.sh
    75B
  • download.R
    905B
  • report.Rmd
    2.3KB
  • exploratory.Rmd
    4.4KB
  • render.R
    227B
  • process_raw_data.R
    2.3KB
  • plot_calendar.R
    949B
  • ggplot_calendar_heatmap_KLS.R
    8.9KB
  • docs
  • index.html
    88B
  • exploratory.html
    1.1MB
  • report.html
    7.3MB
  • _config.yml
    27B
  • .gitattributes
    123B
  • README.md
    1.7KB
  • .httr-oauth
    4.9KB
  • environment.yml
    359B
  • .gitignore
    44B
  • strava.Rproj
    205B
  • env.export.yml
    8.8KB
  • Snakefile
    2.4KB
内容介绍
# Strava [![build](https://github.com/kelly-sovacool/strava/workflows/auto-update/badge.svg)](https://github.com/kelly-sovacool/strava/actions) Having fun plotting my activity data from [Strava](http://bit.ly/strava-kelly)! ## Dependencies Most dependencies are listed in the [conda](https://docs.conda.io/projects/conda/en/latest/index.html) environment file: [`environment.yml`](environment.yml). Additional dependencies not available in conda: - [rStrava](https://github.com/fawda123/rStrava) - [googleway](https://cran.r-project.org/package=googleway) - [googlePolylines](https://cran.r-project.org/package=googlePolylines) - dev version of [lubridate](https://github.com/tidyverse/lubridate) ## Setup Follow the instructions in the [rStrava documentation](https://github.com/fawda123/rStrava#api-functions-token) to generate an API token to access your strava data. Once you have an API token cached as an R data file in `.httr-oath`, you're ready to run this workflow. Be sure not to commit your token to GitHub! ## Workflow Run everything: ``` snakemake ``` See the [snakemake documentation](https://snakemake.readthedocs.io/en/stable/) for more on how to use snakemake. View the workflow DAG: ``` snakemake -n --forceall --dag | dot -Tsvg > figures/dag.svg ``` ![](figures/dag.svg) The [R Markdown report](code/report.Rmd) is rendered to the [docs](docs) directory: view the rendered html [here](https://sovacool.dev/strava/report.html). ## Example plots See all plots in the [figures](figures/) directory ![](figures/plot_summary_4_weeks.png) ![](figures/bar_all_month.png) ![](figures/jitter_type_dist_log2.png) ![](figures/jitter_type_time.png) ![](figures/line_time.png) ![](figures/heatmap_calendar_year.png) ![](figures/bar_time_last_12_mo.png)
评论
    相关推荐