leach算法代码matlab-LEACH-PY:Python中的Leach代码

  • T9_472506
    了解作者
  • 117.8KB
    文件大小
  • zip
    文件格式
  • 0
    收藏次数
  • VIP专享
    资源类型
  • 0
    下载次数
  • 2022-05-22 06:20
    上传日期
浸出算法代码matlab 浸出-PY 低能量自适应聚类层次结构 低能量自适应聚类层次结构(“LEACH”)是一种基于 TDMA 的 MAC 协议,它与聚类和无线传感器网络(WSN)中的简单路由协议相结合。 LEACH 的目标是降低创建和维护集群所需的能耗,以提高无线传感器网络的使用寿命。 LEACH 是一种分层协议,其中大多数节点向簇头传输,簇头将数据聚合和压缩并转发到基站(宿)。 每个节点在每一轮都使用随机算法来确定它是否会在这一轮中成为簇头。 LEACH 假设每个节点都有一个足够强大的无线电,可以直接到达基站或最近的簇头,但是一直以全功率使用这个无线电会浪费能量。 已经成为簇头的节点在 P 轮中不能再次成为簇头,其中 P 是所需的簇头百分比。 此后,每个节点有 1/P 的概率再次成为簇头。 在每一轮结束时,不是簇头的每个节点选择最近的簇头并加入该簇。 然后簇头为其簇中的每个节点创建一个调度来传输它的数据。 根据簇头创建的调度,所有不是簇头的节点仅以 TDMA 方式与簇头通信。 它们使用到达簇头所需的最小能量来这样做,并且只需要在它们的时隙内保持无线电打开。 LEACH 还使用 CD
LEACH-PY-master.zip
  • LEACH-PY-master
  • src
  • LEACH_select_ch.py
    2.3KB
  • LEACH_create_basics.py
    3.4KB
  • send_receive_packets.py
    2.9KB
  • reset_sensors.py
    1003B
  • join_to_nearest_ch.py
    3KB
  • find_sender.py
    367B
  • LEACH.py
    23.3KB
  • LEACH_plotter.py
    3.1KB
  • findReceiver.py
    1010B
  • Leach_matlab
  • findSender.m
    415B
  • createRandomSen.m
    389B
  • LEACH_selectCH.m
    830B
  • sendReceivePackets.m
    3.1KB
  • LEACH_configureSensors.m
    1.2KB
  • findReceiver.m
    793B
  • LEACH_plotter.m
    1.4KB
  • LEACH_setParameters.m
    1.5KB
  • joinToNearestCH.m
    1015B
  • resetSensors.m
    350B
  • LEACH.m
    7.4KB
  • disToSink.m
    438B
  • Leach.pdf
    88.4KB
  • requirements.txt
    62B
  • LICENSE
    34.3KB
  • README.md
    2.5KB
  • .gitignore
    2KB
  • Leach.py
    137B
内容介绍
# LEACH-PY ### Low-energy adaptive clustering hierarchy Low-energy adaptive clustering hierarchy ("LEACH") is a TDMA-based MAC protocol which is integrated with clustering and a simple routing protocol in wireless sensor networks (WSNs). The goal of LEACH is to lower the energy consumption required to create and maintain clusters in order to improve the life time of a wireless sensor network. LEACH is a hierarchical protocol in which most nodes transmit to cluster heads, and the cluster heads aggregate and compress the data and forward it to the base station (sink). Each node uses a stochastic algorithm at each round to determine whether it will become a cluster head in this round. LEACH assumes that each node has a radio powerful enough to directly reach the base station or the nearest cluster head, but that using this radio at full power all the time would waste energy. Nodes that have been cluster heads cannot become cluster heads again for P rounds, where P is the desired percentage of cluster heads. Thereafter, each node has a 1/P probability of becoming a cluster head again. At the end of each round, each node that is not a cluster head selects the closest cluster head and joins that cluster. The cluster head then creates a schedule for each node in its cluster to transmit its data. All nodes that are not cluster heads only communicate with the cluster head in a TDMA fashion, according to the schedule created by the cluster head. They do so using the minimum energy needed to reach the cluster head, and only need to keep their radios on during their time slot. LEACH also uses CDMA so that each cluster uses a different set of CDMA codes, to minimize interference between clusters. ### Properties Properties of this algorithm include: * Cluster based * Random cluster head selection each round with rotation. Or cluster head selection based on sensor having highest energy * Cluster membership adaptive * Data aggregation at cluster head * Cluster head communicate directly with sink or user * Communication done with cluster head via TDMA * Threshold value ### Shortcomings of LEACH Shortcomings of LEACH include: - Remaining energy among the nodes isn't considered when selecting Cluster Heads - Random and variable size cluster formations - Random and uneven distribution of cluster heads - Single hop communication in situations where energy use is less efficient from cluster head to base station --- This code was written by Hritwik Singhal and Nishita Agarwal and was based on Matlab code of Amin-nazari. --- This code is licensed under GPLv3.
评论
    相关推荐
    • 粒子群聚类matlab
      K均值算法:调用模糊聚类库函数kmeans Pso粒子群聚类程序:没有最优解,多次迭代 基于模拟退火的k均值聚类:可以有最优解 基于pso的k均值算法:有最优解,根据适应度判断,适应度越小,分类效果越好
    • k-means聚类MATLAB的基本代码
      用于k-means聚类MATLAB代码的编写,实现数据的聚类分析
    • 动态聚类MATLAB 代码
      根据矩阵计算聚类中心 并分类,再计算聚类中心,迭代出最终结果
    • 聚类MATLAB程序
      聚类MATLAB程序,希望能够对同行有所帮助!
    • k均值聚类 matlab
      matlab 中 k均值聚类 从其他地方k来得 里面有图 句子有解释
    • Kmeans聚类matlab程序
      用Kmeans聚类方法实现随即点的分类,在二维平面上以均匀分布随机多个点,输入所需聚类数以得到聚类结果。
    • K聚类matlab程序
      方便对于大容量的数据进行聚类压缩,K-means算法目前是比较主流的主流方法,亲测有效,需要的可以下载,有问题的也可以给我留言进行交流。
    • 图像聚类matlab程序
      针对图像聚类,编写的图像聚类matlab的程序,简单易懂。
    • 聚类matlab实现
      聚类,数据集为大家熟悉的TwoMoons,还有SPL的字母字样的数据,用谱聚类实现之后,可以得到较好的结果。
    • 模糊聚类matlab程序
      积分最低,模糊聚类matlab程序,里面有相关系数法聚类,欧几里得法等聚类方法