图像处理论文

  • x6_825630
    了解作者
  • 2.4MB
    文件大小
  • rar
    文件格式
  • 0
    收藏次数
  • VIP专享
    资源类型
  • 0
    下载次数
  • 2022-05-23 08:25
    上传日期
这是一篇本人发表的文章,里面详细写了对于处理多峰值图像处理的新思想,这种思想可以解决小图像,多峰阈值分割问题。
012919833.rar
  • 面向小目标图像多峰值方图的快速分级模糊阈值分割算法.doc
    2.5MB
内容介绍
<html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta charset="utf-8"> <meta name="generator" content="pdf2htmlEX"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css"> <link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css"> <link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/628ad49216e0ca7141373afb/raw.css"> <script src="https://static.pudn.com/base/js/compatibility.min.js"></script> <script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script> <script> try{ pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({}); }catch(e){} </script> <title></title> </head> <body> <div id="sidebar" style="display: none"> <div id="outline"> </div> </div> <div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/628ad49216e0ca7141373afb/bg1.jpg"><div class="c x0 y1 w2 h2"><div class="t m0 x1 h3 y2 ff1 fs0 fc0 sc0 ls0 ws0">&#38754;&#21521;&#23567;&#30446;&#26631;&#22270;&#20687;&#22810;&#23792;<span class="fc1 sc1">&#20540;</span>&#26041;&#22270;&#30340;&#24555;&#36895;</div><div class="t m0 x2 h3 y3 ff1 fs0 fc0 sc0 ls0 ws0">&#20998;&#32423;&#27169;&#31946;&#38408;&#20540;&#20998;&#21106;&#31639;&#27861;</div><div class="t m0 x3 h4 y4 ff1 fs1 fc1 sc2 ls0 ws0">&#26446;&#21451;&#22686;&#12289;&#26519;&#33635;&#25991;&#12289;&#24352;&#30887;&#24935;&#12289;&#35874;&#20161;&#26665;&#12289;&#24352;&#29747;</div><div class="t m0 x4 h5 y5 ff1 fs2 fc0 sc2 ls0 ws0">&#25688;&#35201;&#65306;&#38024;&#23545;&#24403;&#21069;&#23567;&#30446;&#26631;&#22270;&#20687;&#38408;&#20540;&#20998;&#21106;&#30740;&#31350;&#24037;&#20316;&#38754;&#20020;&#30340;&#38590;&#39064;<span class="ff2">, </span>&#25552;&#20986;&#20102;&#23567;&#30446;&#26631;&#22270;&#20687;</div><div class="t m0 x4 h5 y6 ff1 fs2 fc0 sc2 ls0 ws0">&#20998;&#32423;&#30340;&#38408;&#20540;&#20998;&#21106;&#26032;&#26041;&#27861;<span class="ff2">. </span>&#39318;&#20808;&#32473;&#20986;&#20102;&#22270;&#20687;&#28784;&#24230;&#20540;&#20998;&#24067;&#35745;&#31639;&#20989;&#25968;&#65292;&#23545;&#28784;&#24230;&#20540;&#20998;&#24067;</div><div class="t m0 x4 h5 y7 ff1 fs2 fc0 sc2 ls0 ws0">&#24773;&#20917;&#36827;&#34892;&#20998;&#26512;&#65292;&#25552;&#20986;&#20102;&#38754;&#21521;&#23567;&#30446;&#26631;&#22270;&#20687;&#20998;&#32423;&#30340;&#38408;&#20540;&#20998;&#21106;&#31639;&#27861;&#65288;For small target i</div><div class="t m0 x4 h5 y8 ff1 fs2 fc0 sc2 ls0 ws0">mage threshold segmentation algorithm is proposed&#65292;<span class="ff2">STIT<span class="_ _0"></span></span>&#65289;&#28982;&#21518;&#36890;&#36807;&#23545;&#23567;&#30446;</div><div class="t m0 x4 h5 y9 ff1 fs2 fc0 sc2 ls0 ws0">&#26631;&#22270;&#20687;&#36827;&#34892;&#20998;&#32423;&#24182;&#26368;&#32456;&#36827;&#34892;&#22270;&#20687;&#38408;&#20540;&#36873;&#21462;&#12290;&#36825;&#19968;&#31639;&#27861;&#33021;&#22815;&#31616;&#21333;&#12289;&#24555;&#36895;&#22320;&#35745;&#31639;&#20986;</div><div class="t m0 x4 h5 ya ff1 fs2 fc0 sc2 ls0 ws0">&#23567;&#30446;&#26631;&#22270;&#20687;&#30340;&#27169;&#31946;&#38408;&#20540;&#65292;&#26681;&#25454;&#25152;&#24471;&#30340;&#35745;&#31639;&#30340;&#27169;&#31946;&#38408;&#20540;&#65292;&#23545;&#23567;&#30446;&#26631;&#22270;&#20687;&#36827;&#34892;&#20998;&#21106;&#65292;</div><div class="t m0 x4 h5 yb ff1 fs2 fc0 sc2 ls0 ws0">&#21462;&#24471;&#25152;&#38656;&#35201;&#30340;&#30446;&#26631;&#22270;&#20687;&#12290;&#23454;&#39564;&#34920;&#26126;<span class="ff2">, </span>&#26412;&#25991;&#31639;&#27861;&#23545;&#23567;&#30446;&#26631;&#22270;&#20687;&#38408;&#20540;&#20998;&#21106;&#38382;&#39064;&#20855;&#26377;</div><div class="t m0 x4 h5 yc ff1 fs2 fc0 sc2 ls0 ws0">&#24555;&#36895;&#24615;&#12289;&#31616;&#21333;&#24615;&#12290;</div><div class="t m0 x4 h5 yd ff2 fs2 fc0 sc2 ls0 ws0"> <span class="ff1">&#20851;&#38190;&#23383;&#65306;&#22270;&#20687;&#22788;&#29702;&#12289;&#38408;&#20540;&#20998;&#21106;&#12289;&#25554;&#20540;&#24179;&#28369;&#12289;&#30452;&#26041;&#22270;&#12289;&#28784;&#24230;&#20540;&#12289;&#23567;&#30446;&#26631;&#22270;&#20687;&#12290;</span></div><div class="t m0 x4 h6 ye ff2 fs2 fc0 sc2 ls0 ws0"> Based on fuzzy threshold segmentation algorithm of small target </div><div class="t m0 x4 h6 yf ff2 fs2 fc0 sc2 ls0 ws0">image classi&#58906;cation</div><div class="t m0 x5 h6 y10 ff2 fs2 fc0 sc2 ls0 ws0">Y<span class="_ _1"></span>ouzeng Li ,R<span class="_ _2"></span>ongwen Lin, Bihui Zhang ,R<span class="_ _2"></span>enxu Xie , Lin zha<span class="_ _0"></span>ng</div><div class="t m0 x4 h6 y11 ff2 fs2 fc0 sc2 ls0 ws0">Abstract: in view of the curr<span class="_ _2"></span>ent small target image thr<span class="_ _2"></span>eshold </div><div class="t m0 x4 h6 y12 ff2 fs2 fc0 sc2 ls0 ws0">segmentation re<span class="_ _2"></span>search pr<span class="_ _2"></span>oblems, and puts<span class="_ _0"></span> forwar<span class="_ _2"></span>d<span class="_ _0"></span> the small target </div><div class="t m0 x4 h6 y13 ff2 fs2 fc0 sc2 ls0 ws0">image classi&#58906;cation, a new method of threshold segmentation. The </div><div class="t m0 x4 h6 y14 ff2 fs2 fc0 sc2 ls0 ws0">&#58906;rst function of the image grey value distribution computation, </div><div class="t m0 x4 h6 y15 ff2 fs2 fc0 sc2 ls0 ws0">analysis of the grey value distribution, was pr<span class="_ _2"></span>oposed <span class="_ _0"></span>F<span class="_ _2"></span>or small<span class="_ _0"></span> </div><div class="t m0 x4 h6 y16 ff2 fs2 fc0 sc2 ls0 ws0">target image thr<span class="_ _2"></span>eshold segmentation algorithm is proposed (Fo<span class="_ _2"></span>r </div><div class="t m0 x4 h6 y17 ff2 fs2 fc0 sc2 ls0 ws0">small target image thr<span class="_ _2"></span>eshold segmentation algorithm is<span class="_ _0"></span> pro<span class="_ _2"></span>posed, </div><div class="t m0 x4 h6 y18 ff2 fs2 fc0 sc2 ls0 ws0">STIT) and then through the study of the classi&#58906;cation of small target </div><div class="t m0 x4 h6 y19 ff2 fs2 fc0 sc2 ls0 ws0">image and eventually image threshold selection. This algorithm is </div><div class="t m0 x4 h6 y1a ff2 fs2 fc0 sc2 ls0 ws0">simple, quick to calculate the fuzzy threshold, the small target </div><div class="t m0 x4 h6 y1b ff2 fs2 fc0 sc2 ls0 ws0">image according to the calculation of the fuzzy threshold, the </div><div class="t m0 x4 h6 y1c ff2 fs2 fc0 sc2 ls0 ws0">segmentation of small target image, obtain the r<span class="_ _2"></span>equired tar<span class="_ _2"></span>get </div><div class="t m0 x4 h6 y1d ff2 fs2 fc0 sc2 ls0 ws0">image. Experiments show that the algorithm for small ta<span class="_ _0"></span>rget image </div><div class="t m0 x4 h6 y1e ff2 fs2 fc0 sc2 ls0 ws0">thre<span class="_ _2"></span>shold <span class="_ _0"></span>segmentation pr<span class="_ _2"></span>oblem with<span class="_ _0"></span> rapidity, simplicity<span class="_ _1"></span>.</div><div class="t m0 x4 h5 y1f ff2 fs2 fc0 sc2 ls0 ws0"> <span class="ff1">Key words: image processing, threshold segmentation, smooth interpolation, </span></div><div class="t m0 x4 h5 y20 ff1 fs2 fc0 sc2 ls0 ws0">histogram, gray value, small target image.</div><div class="t m0 x4 h5 y21 ff1 fs2 fc0 sc2 ls0 ws0">1 &#24341;&#35328;</div><div class="t m0 x4 h5 y22 ff2 fs2 fc0 sc2 ls0 ws0"> <span class="ff1">&#22312;&#24456;&#22810;&#22270;&#20687;&#22788;&#29702;&#24212;&#29992;&#20013;</span>, <span class="ff1">&#22270;&#20687;&#20013;&#30446;&#26631;&#21644;&#32972;&#26223;&#21306;&#22495;&#30340;&#20687;&#32032;&#28857;&#21487;&#20197;&#36890;&#36807;&#20351;&#29992;&#26576;&#19968;</span></div><div class="t m0 x4 h5 y23 ff1 fs2 fc0 sc2 ls0 ws0">&#21512;&#29702;&#30340;&#28784;&#24230;&#20540;<span class="ff2">(</span>&#38408;&#20540;<span class="ff2">)</span>&#26377;&#25928;&#22320;&#20998;&#24320;<span class="ff2">, </span>&#22270;&#20687;&#30340;&#38408;&#20540;&#20998;&#21106;&#25216;&#26415;&#23545;&#36825;&#31867;&#22270;&#20687;&#23588;&#20026;&#36866;&#29992;<span class="ff2">. </span>&#36817;</div><div class="t m0 x4 h5 y24 ff1 fs2 fc0 sc2 ls0 ws0">&#24180;&#26469;<span class="ff2">, </span>&#26032;&#24605;&#24819;&#21644;&#26032;&#29702;&#35770;&#19981;&#26029;&#20986;&#29616;<span class="ff2">, </span>&#26085;&#30410;&#20016;&#23500;&#30528;&#36825;&#39033;&#30740;&#31350;&#30340;&#20869;&#23481;<span class="ff2">[1].</span></div></div></div><div class="pi" data-data='{"ctm":[1.611850,0.000000,0.000000,1.611850,0.000000,0.000000]}'></div></div> </body> </html>
评论
    相关推荐
    • 图像处理
      基于MATLAB平台的图像处理程序代码资源
    • 数字图像处理
      HSI RGB LZW 哈弗慢编码,直方图均衡化,累计直方图,灰度映射,腐蚀,膨胀(文件内容:图像处理练习.doc 数字图像处理代码.doc)
    • 数字图像处理
      本书是数字图像处理理论与实践相结合的成功之作,强调理论用于解决工业或科学研究中常见的实际问题。这种与基本概念和数字图像处理的各种实用技术,使读者能用这些技术解决数字图像中的新问题。 全书共22章,1-5章...
    • 数字图像处理
      本书全面系统地讲述了数字图像处理领域中的15大核心话题,包括色彩空间、图像编码、频域变换、图像文件格式、几何变换、灰度变换、图像的增强处理、边缘检测、轮廓跟踪、形态学处理、图像分割、图像的加密与隐藏、...
    • 数字图像处理
      数字图像处理宝典,PDF高清版,因每次上传限制,分为7个部分上传,搜索时搜 “数字图像处理(中午版part#)
    • 图像处理
      图像处理
    • 图像处理
      图像处理
    • 图像处理
      图像处理
    • 图像处理
      图像处理
    • 图像处理代码
      这个是图像处理不可多得的源码,是我们做项目时用到的所有技术。涉及到哈夫曼码编码、香农-弗诺编码、伪彩色、滤波、模板匹配 、图像平滑、图像复原、图像显示、特征提取、图像变、运动检测、小波变换、图像分割等...