• T3_197366
    了解作者
  • 943.7KB
    文件大小
  • zip
    文件格式
  • 0
    收藏次数
  • VIP专享
    资源类型
  • 0
    下载次数
  • 2022-05-23 11:21
    上传日期
使用python实现k近邻算法,以及测试用例如何识别手写数字,该算法的实现是基于python3,python2的代码可能部分有所不同
machine learn.zip
内容介绍
40920 8.326976 0.953952 largeDoses 14488 7.153469 1.673904 smallDoses 26052 1.441871 0.805124 didntLike 75136 13.147394 0.428964 didntLike 38344 1.669788 0.134296 didntLike 72993 10.141740 1.032955 didntLike 35948 6.830792 1.213192 largeDoses 42666 13.276369 0.543880 largeDoses 67497 8.631577 0.749278 didntLike 35483 12.273169 1.508053 largeDoses 50242 3.723498 0.831917 didntLike 63275 8.385879 1.669485 didntLike 5569 4.875435 0.728658 smallDoses 51052 4.680098 0.625224 didntLike 77372 15.299570 0.331351 didntLike 43673 1.889461 0.191283 didntLike 61364 7.516754 1.269164 didntLike 69673 14.239195 0.261333 didntLike 15669 0.000000 1.250185 smallDoses 28488 10.528555 1.304844 largeDoses 6487 3.540265 0.822483 smallDoses 37708 2.991551 0.833920 didntLike 22620 5.297865 0.638306 smallDoses 28782 6.593803 0.187108 largeDoses 19739 2.816760 1.686209 smallDoses 36788 12.458258 0.649617 largeDoses 5741 0.000000 1.656418 smallDoses 28567 9.968648 0.731232 largeDoses 6808 1.364838 0.640103 smallDoses 41611 0.230453 1.151996 didntLike 36661 11.865402 0.882810 largeDoses 43605 0.120460 1.352013 didntLike 15360 8.545204 1.340429 largeDoses 63796 5.856649 0.160006 didntLike 10743 9.665618 0.778626 smallDoses 70808 9.778763 1.084103 didntLike 72011 4.932976 0.632026 didntLike 5914 2.216246 0.587095 smallDoses 14851 14.305636 0.632317 largeDoses 33553 12.591889 0.686581 largeDoses 44952 3.424649 1.004504 didntLike 17934 0.000000 0.147573 smallDoses 27738 8.533823 0.205324 largeDoses 29290 9.829528 0.238620 largeDoses 42330 11.492186 0.263499 largeDoses 36429 3.570968 0.832254 didntLike 39623 1.771228 0.207612 didntLike 32404 3.513921 0.991854 didntLike 27268 4.398172 0.975024 didntLike 5477 4.276823 1.174874 smallDoses 14254 5.946014 1.614244 smallDoses 68613 13.798970 0.724375 didntLike 41539 10.393591 1.663724 largeDoses 7917 3.007577 0.297302 smallDoses 21331 1.031938 0.486174 smallDoses 8338 4.751212 0.064693 smallDoses 5176 3.692269 1.655113 smallDoses 18983 10.448091 0.267652 largeDoses 68837 10.585786 0.329557 didntLike 13438 1.604501 0.069064 smallDoses 48849 3.679497 0.961466 didntLike 12285 3.795146 0.696694 smallDoses 7826 2.531885 1.659173 smallDoses 5565 9.733340 0.977746 smallDoses 10346 6.093067 1.413798 smallDoses 1823 7.712960 1.054927 smallDoses 9744 11.470364 0.760461 largeDoses 16857 2.886529 0.934416 smallDoses 39336 10.054373 1.138351 largeDoses 65230 9.972470 0.881876 didntLike 2463 2.335785 1.366145 smallDoses 27353 11.375155 1.528626 largeDoses 16191 0.000000 0.605619 smallDoses 12258 4.126787 0.357501 smallDoses 42377 6.319522 1.058602 didntLike 25607 8.680527 0.086955 largeDoses 77450 14.856391 1.129823 didntLike 58732 2.454285 0.222380 didntLike 46426 7.292202 0.548607 largeDoses 32688 8.745137 0.857348 largeDoses 64890 8.579001 0.683048 didntLike 8554 2.507302 0.869177 smallDoses 28861 11.415476 1.505466 largeDoses 42050 4.838540 1.680892 didntLike 32193 10.339507 0.583646 largeDoses 64895 6.573742 1.151433 didntLike 2355 6.539397 0.462065 smallDoses 0 2.209159 0.723567 smallDoses 70406 11.196378 0.836326 didntLike 57399 4.229595 0.128253 didntLike 41732 9.505944 0.005273 largeDoses 11429 8.652725 1.348934 largeDoses 75270 17.101108 0.490712 didntLike 5459 7.871839 0.717662 smallDoses 73520 8.262131 1.361646 didntLike 40279 9.015635 1.658555 largeDoses 21540 9.215351 0.806762 largeDoses 17694 6.375007 0.033678 smallDoses 22329 2.262014 1.022169 didntLike 46570 5.677110 0.709469 didntLike 42403 11.293017 0.207976 largeDoses 33654 6.590043 1.353117 didntLike 9171 4.711960 0.194167 smallDoses 28122 8.768099 1.108041 largeDoses 34095 11.502519 0.545097 largeDoses 1774 4.682812 0.578112 smallDoses 40131 12.446578 0.300754 largeDoses 13994 12.908384 1.657722 largeDoses 77064 12.601108 0.974527 didntLike 11210 3.929456 0.025466 smallDoses 6122 9.751503 1.182050 largeDoses 15341 3.043767 0.888168 smallDoses 44373 4.391522 0.807100 didntLike 28454 11.695276 0.679015 largeDoses 63771 7.879742 0.154263 didntLike 9217 5.613163 0.933632 smallDoses 69076 9.140172 0.851300 didntLike 24489 4.258644 0.206892 didntLike 16871 6.799831 1.221171 smallDoses 39776 8.752758 0.484418 largeDoses 5901 1.123033 1.180352 smallDoses 40987 10.833248 1.585426 largeDoses 7479 3.051618 0.026781 smallDoses 38768 5.308409 0.030683 largeDoses 4933 1.841792 0.028099 smallDoses 32311 2.261978 1.605603 didntLike 26501 11.573696 1.061347 largeDoses 37433 8.038764 1.083910 largeDoses 23503 10.734007 0.103715 largeDoses 68607 9.661909 0.350772 didntLike 27742 9.005850 0.548737 largeDoses 11303 0.000000 0.539131 smallDoses 0 5.757140 1.062373 smallDoses 32729 9.164656 1.624565 largeDoses 24619 1.318340 1.436243 didntLike 42414 14.075597 0.695934 largeDoses 20210 10.107550 1.308398 largeDoses 33225 7.960293 1.219760 largeDoses 54483 6.317292 0.018209 didntLike 18475 12.664194 0.595653 largeDoses 33926 2.906644 0.581657 didntLike 43865 2.388241 0.913938 didntLike 26547 6.024471 0.486215 largeDoses 44404 7.226764 1.255329 largeDoses 16674 4.183997 1.275290 smallDoses 8123 11.850211 1.096981 largeDoses 42747 11.661797 1.167935 largeDoses 56054 3.574967 0.494666 didntLike 10933 0.000000 0.107475 smallDoses 18121 7.937657 0.904799 largeDoses 11272 3.365027 1.014085 smallDoses 16297 0.000000 0.367491 smallDoses 28168 13.860672 1.293270 largeDoses 40963 10.306714 1.211594 largeDoses 31685 7.228002 0.670670 largeDoses 55164 4.508740 1.036192 didntLike 17595 0.366328 0.163652 smallDoses 1862 3.299444 0.575152 smallDoses 57087 0.573287 0.607915 didntLike 63082 9.183738 0.012280 didntLike 51213 7.842646 1.060636 largeDoses 6487 4.750964 0.558240 smallDoses 4805 11.438702 1.556334 largeDoses 30302 8.243063 1.122768 largeDoses 68680 7.949017 0.271865 didntLike 17591 7.875477 0.227085 smallDoses 74391 9.569087 0.364856 didntLike 37217 7.750103 0.869094 largeDoses 42814 0.000000 1.515293 didntLike 14738 3.396030 0.633977 smallDoses 19896 11.916091 0.025294 largeDoses 14673 0.460758 0.689586 smallDoses 32011 13.087566 0.476002 largeDoses 58736 4.589016 1.672600 didntLike 54744 8.397217 1.534103 didntLike 29482 5.562772 1.689388 didntLike 27698 10.905159 0.619091 largeDoses 11443 1.311441 1.169887 smallDoses 56117 10.647170 0.980141 largeDoses 39514 0.000000 0.481918 didntLike 26627 8.503025 0.830861 largeDoses 16525 0.436880 1.395314 smallDoses 24368 6.127867 1.102179 didntLike 22160 12.112492 0.359680 largeDoses 6030 1.264968 1.141582 smallDoses 6468 6.067568 1.327047 smallDoses 22945 8.010964 1.681648 largeDoses 18520 3.791084 0.304072 smallDoses 34914 11.773195 1.262621 largeDoses 6121 8.339588 1.443357 smallDoses 38063 2.563092 1.464013 didntLike 23410 5.954216 0.953782 didntLike 35073 9.288374 0.767318 largeDoses 52914 3.976796 1.043109 didntLike 16801 8.585227 1.455708 largeDoses 9533 1.271946 0.796506 smallDoses 16721 0.000000 0.242778 smallDoses 5832 0.000000 0.089749 smallDoses 44591 11.521298 0.300860 largeDoses 10143 1.139447 0.415373 smallDoses 21609 5.699090 1.391892 smallDoses 23817 2.449378 1.322560 didntLike 15640 0.000000 1.228380 smallDoses 8847 3.168365 0.053993 smallDoses 50939 10.428610 1.126257 largeDoses 28521 2.943070 1.446816 didntLike 32901 10.441348 0.975283 largeDoses 42850 12.478764 1.628726 largeDoses 13499 5.856902 0.363883 smallDoses 40345 2.476420 0.096075 didntLike 43547 1.826637 0.811457 didntLike 70758 4.324451 0.328235 didntLike 19780 1.376085 1.178359 smallDoses 44484 5.342462 0.394527 didntLike 54462 11.835521 0.693301 largeDoses 20085 12.423687 1.424264 largeDoses 42291 12.161273 0.071131 largeDoses 47550 8.148360 1.649194 largeDoses 11938 1.531067 1.549756 smallDoses 40699 3.200912 0.309679 didntLike 70908 8.862691 0.530506 didntLike 73989 6.370551 0.369350 didntLike 11872 2.468841 0.145060 smallDoses 48463 11.054212 0.141508 largeDoses
评论
    相关推荐
    • GaussDB_100_1.0.1-DATABASE-REDHAT-64bit.tar.gz
      guassdb100在redhat上安装包,单机部署的包,安装步骤请看我的文中介绍,经过大量实验搭建总结出来的文档
    • 卷积神经网络
      这是卷积神经网络的一个实际用例,已经调试好了,能够在matlab上成功运行,适合从事卷积神经网络(CNN)研究的人员学习使用。
    • SIM800C_MQTT.rar
      使用SIM800C模块,使用MQTT协议,连接中国移动onenet平台,能实现数据的订阅、发布、存储等
    • android从bootloader到launcher启动流程整理
      讲述android 开机流程 从boot rom---bootloader---init--zygote---systemserver---ams 并附上自己整理的每个流程的流程图 ,清晰熟悉android 启动流程
    • Aerosim Blockset
      The AeroSim aeronautical simulation blockset provides a complete set of tools for the rapid development of nonlinear 6-degree of freedom aircraft dynamic models. In addition to the basic aircraft dynamics blocks, the library also includes complete aircraft models which can be customized through parameter files.
    • 微电网PSO优化算法
      微电网的粒子群优化调度算法,里面包括相关文献参考和电价数据,算法的过程解释的很清楚,是我学算法时候用到的资源。
    • 分数阶混沌系统:分数阶混沌系统的数值解。-matlab开发
      该工具箱包含可用于模拟一些著名的分数阶混沌系统的函数,例如: - 陈的系统, - Arneodo的系统, - Genesio-Tesi 的系统, - 洛伦兹系统, - 牛顿-莱普尼克系统, - 罗斯勒的系统, - Lotka-Volterra系统, - 达芬的系统, - 范德波尔的振荡器, -伏打的系统- 陆氏系统, - 刘的系统, - Chua的系统, - 金融系统, - 3 细胞 CNN。 这些函数以数值方式计算描述混沌系统的分数阶非线性微分方程的解。 每个函数返回总模拟时间的状态轨迹(吸引器)。 更多详情请看书: Ivo Petras,分数阶非线性系统:建模、分析和仿真,Springer,系列:非线性物理科学,2011,ISBN 978-3-642-18100-9。 http://www.springer.com/engineering/control/book/978-3-
    • matlabpam代码-dsp-library:用于光通信的MATLABDSP函数库
      matlab pam代码 DSP库 该项目包含几种不同的功能,可将DSP算法应用于光通信。 这些功能适用于相干和非相干(PAM,DMT)光通信。 大多数功能是相互独立的。 因此,该代码中的功能可以轻松使用,并与其他DSP功能结合使用。 用法 功能列表以及简短说明在文件中。 输入和输出参数的描述在每个函数的标题中。 讯号 通常,输入(和输出)信号在第一维度上具有时间(例如,列向量),而第二维度用于一次管理多个信号(例如,不同的极化,不同的参数等)。 之所以选择这种约定,是因为MATLAB通过将列保留在内存的连续部分中来存储矩阵,因此,这种约定比其他方法(行向量)要快。 参数 大多数功能使用参数结构作为输入参数。 函数中使用的参数的描述通常在标头中,而coherent-dsp函数的默认参数在文件中。 参考 执照 此代码在下发布。
    • 有关多目标跟踪的PHD滤波的一些资料
      一些关于多目标跟踪的新的文献,主要是有关概率假设密度(PHD)的
    • 雷达目标跟踪程序合集.zip
      雷达目标跟踪相关程序,CA运动模型,CT运动模型,IMM交互多模型,卡尔曼滤波,粒子滤波PF,概率数据互联JPDA等算法程序相互结合,实现密集杂波环境目标跟踪和高机动目标跟踪....