捷联惯导积分算法_SAVAGE

  • W3_845978
    了解作者
  • 743.8KB
    文件大小
  • rar
    文件格式
  • 0
    收藏次数
  • VIP专享
    资源类型
  • 0
    下载次数
  • 2022-05-25 01:41
    上传日期
捷联惯导经典算法姿态更新以及速度和位置更新 包括英文原文及其纠错
Strapdown Inertial Navigation Integration Algorithm.rar
  • Strapdown Inertial Navigation Integration Algorithm
  • AIAA-Part 1 Attitude Algorithms_Errata.pdf
    79.1KB
  • AIAA-Part 1 Attitude Algorithms.pdf
    346.4KB
  • AIAA-Part 2 Velocity and Position Algorithms.pdf
    495.3KB
  • AIAA-Part 2 Velocity and Position Algorithms_Errata.pdf
    132KB
内容介绍
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="utf-8"><meta name="generator" content="pdf2htmlEX"><meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"><link rel="stylesheet" href="https://csdnimg.cn/release/download_crawler_static/css/base.min.css"><link rel="stylesheet" href="https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css"><link rel="stylesheet" href="https://csdnimg.cn/release/download_crawler_static/2208306/raw.css"><script src="https://csdnimg.cn/release/download_crawler_static/js/compatibility.min.js"></script><script src="https://csdnimg.cn/release/download_crawler_static/js/pdf2htmlEX.min.js"></script><script>try{pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({});}catch(e){}</script><title></title></head><body><div id="sidebar" style="display: none"><div id="outline"></div></div><div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://csdnimg.cn/release/download_crawler_static/2208306/bg1.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">J<span class="fs1">OURNAL<span class="_ _0"> </span>OF<span class="_ _1"> </span></span>G<span class="fs1">UID<span class="_ _2"></span>ANCE<span class="fs0">,<span class="_ _1"> </span>C</span>ONTROL<span class="fs0">,<span class="_ _3"> </span></span>AND<span class="_ _3"> </span><span class="fs0">D</span>YNAMICS</span></div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">V<span class="_ _4"></span>ol.<span class="_ _1"> </span>21<span class="_ _5"></span>,<span class="_ _0"> </span>No<span class="_ _5"></span>.<span class="_ _3"> </span>2,<span class="_ _1"> </span>Marc<span class="_ _5"></span>h</div><div class="t m0 x2 h3 y3 ff1 fs1 fc0 sc0 ls0 ws0">&#8211;</div><div class="t m0 x3 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">Apri<span class="_ _5"></span>l<span class="_ _3"> </span>19<span class="_ _5"></span>98</div><div class="t m0 x4 h4 y4 ff2 fs2 fc0 sc0 ls0 ws0">Strap<span class="_ _5"></span>down<span class="_ _6"> </span>Inertial<span class="_ _7"> </span>Navigation<span class="_ _6"> </span>In<span class="_ _5"></span>tegration<span class="_ _6"> </span>A<span class="_ _5"></span>lgorithm<span class="_ _7"> </span>Design</div><div class="t m0 x5 h4 y5 ff2 fs2 fc0 sc0 ls0 ws0">Part<span class="_ _6"> </span>2:<span class="_ _6"> </span>V<span class="_ _8"></span>elocity<span class="_ _6"> </span>a<span class="_ _5"></span>nd<span class="_ _6"> </span>Positi<span class="_ _2"></span>on<span class="_ _7"> </span>Algor<span class="_ _5"></span>i<span class="_ _2"></span>thms</div><div class="t m0 x6 h5 y6 ff1 fs3 fc0 sc0 ls0 ws0">Paul<span class="_ _9"> </span>G.<span class="_ _1"> </span>Savag<span class="_ _5"></span>e</div><div class="t m0 x7 h6 y7 ff3 fs1 fc0 sc0 ls0 ws0">&#164;</div><div class="t m0 x8 h7 y8 ff4 fs3 fc0 sc0 ls0 ws0">Stra<span class="_ _5"></span>pdo<span class="_ _5"></span>wn<span class="_ _3"> </span>Assoc<span class="_ _5"></span>iat<span class="_ _5"></span>es,<span class="_ _3"> </span>Inc.,<span class="_ _1"> </span>M<span class="_ _5"></span>apl<span class="_ _5"></span>e<span class="_ _0"> </span>P<span class="_ _5"></span>lai<span class="_ _5"></span>n,<span class="_ _3"> </span>Min<span class="_ _5"></span>neso<span class="_ _5"></span>ta<span class="_ _3"> </span>553<span class="_ _5"></span>59</div><div class="t m0 x9 h8 y9 ff2 fs4 fc0 sc0 ls0 ws0">This<span class="_ _0"> </span>ser<span class="_ _2"></span>i<span class="_ _5"></span>e<span class="_ _2"></span>s<span class="_ _3"> </span>of<span class="_ _0"> </span>two<span class="_ _0"> </span>pap<span class="_ _5"></span>er<span class="_ _2"></span>s</div><div class="t m0 xa h8 ya ff2 fs4 fc0 sc0 ls0 ws0">(</div><div class="t m0 xb h8 y9 ff2 fs4 fc0 sc0 ls0 ws0">Parts<span class="_ _0"> </span>1<span class="_ _0"> </span>and<span class="_ _0"> </span>2</div><div class="t m0 xc h8 ya ff2 fs4 fc0 sc0 ls0 ws0">)</div><div class="t m0 xd h8 y9 ff2 fs4 fc0 sc0 ls0 ws0">provides<span class="_ _0"> </span>a<span class="_ _0"> </span>rigorous<span class="_ _0"> </span>comprehensive<span class="_ _0"> </span>ap<span class="_ _5"></span>pr<span class="_ _2"></span>oach<span class="_ _0"> </span>to<span class="_ _0"> </span>the<span class="_ _0"> </span>desig<span class="_ _5"></span>n<span class="_ _a"> </span>of<span class="_ _0"> </span>the<span class="_ _0"> </span>princi-</div><div class="t m0 xe h8 yb ff2 fs4 fc0 sc0 ls0 ws0">pal<span class="_ _3"> </span>software<span class="_ _a"> </span>a<span class="_ _5"></span>lgorith<span class="_ _5"></span>ms<span class="_ _a"> </span>util<span class="_ _5"></span>ize<span class="_ _2"></span>d<span class="_ _0"> </span>in<span class="_ _3"> </span>mod<span class="_ _5"></span>er<span class="_ _2"></span>n-day<span class="_ _0"> </span>strapd<span class="_ _5"></span>own<span class="_ _a"> </span>inertia<span class="_ _5"></span>l<span class="_ _a"> </span>n<span class="_ _5"></span>a<span class="_ _2"></span>v<span class="_ _5"></span>igati<span class="_ _5"></span>on<span class="_ _b"> </span>systems:<span class="_ _3"> </span>integra<span class="_"> </span>tio<span class="_ _5"></span>n<span class="_ _a"> </span>of<span class="_ _0"> </span>a<span class="_ _5"></span>ngul<span class="_ _5"></span>ar<span class="_ _b"> </span>ra<span class="_ _5"></span>te</div><div class="t m0 xe h8 yc ff2 fs4 fc0 sc0 ls0 ws0">into<span class="_ _9"> </span>attitud<span class="_ _5"></span>e<span class="_ _2"></span>,<span class="_ _3"> </span>a<span class="_ _5"></span>cce<span class="_ _2"></span>l<span class="_ _5"></span>e<span class="_ _2"></span>ratio<span class="_ _5"></span>n<span class="_ _3"> </span>tran<span class="_ _5"></span>sf<span class="_ _2"></span>o<span class="_ _5"></span>r<span class="_ _2"></span>ma<span class="_ _5"></span>tion/<span class="_ _2"></span>integra<span class="_ _5"></span>tion<span class="_ _3"> </span>in<span class="_ _5"></span>to<span class="_ _3"> </span>velocity,<span class="_ _3"> </span>and<span class="_ _3"> </span>i<span class="_ _5"></span>ntegratio<span class="_ _5"></span>n<span class="_ _0"> </span>o<span class="_ _5"></span>f<span class="_ _3"> </span>velocit<span class="_ _5"></span>y<span class="_ _3"> </span>into<span class="_ _3"> </span>p<span class="_ _5"></span>osition<span class="_ _5"></span>.<span class="_ _0"> </span>Th<span class="_ _5"></span>e</div><div class="t m0 xe h8 yd ff2 fs4 fc0 sc0 ls0 ws0">alg<span class="_ _5"></span>orithm<span class="_ _5"></span>s<span class="_ _b"> </span>ar<span class="_ _2"></span>e<span class="_ _0"> </span>structured<span class="_ _a"> </span>u<span class="_ _5"></span>tilizing<span class="_ _a"> </span>t<span class="_"> </span>he<span class="_ _0"> </span>two-sp<span class="_ _5"></span>e<span class="_ _2"></span>ed<span class="_ _0"> </span>upda<span class="_ _5"></span>ting<span class="_ _b"> </span>a<span class="_ _5"></span>pproach<span class="_ _b"> </span>o<span class="_ _5"></span>rigina<span class="_ _5"></span>lly<span class="_ _b"> </span>developed<span class="_ _a"> </span>for<span class="_ _a"> </span>a<span class="_ _5"></span>ttitude<span class="_ _a"> </span>up<span class="_ _5"></span>datin<span class="_ _5"></span>g;<span class="_ _5"></span>a<span class="_ _5"></span>n</div><div class="t m0 xe h8 ye ff2 fs4 fc0 sc0 ls0 ws0">ana<span class="_ _5"></span>lytical<span class="_ _5"></span>ly<span class="_ _b"> </span>exact<span class="_ _0"> </span>equa<span class="_ _5"></span>tion<span class="_ _a"> </span>is<span class="_ _0"> </span>used<span class="_ _0"> </span>at<span class="_ _0"> </span>m<span class="_ _5"></span>oderate<span class="_ _a"> </span>sp<span class="_ _5"></span>e<span class="_ _2"></span>ed<span class="_ _0"> </span>to<span class="_ _0"> </span>upd<span class="_ _5"></span>ate<span class="_ _a"> </span>the<span class="_ _0"> </span>integ<span class="_ _5"></span>ration<span class="_ _a"> </span>p<span class="_ _5"></span>arameter</div><div class="t m0 xf h8 yf ff2 fs4 fc0 sc0 ls0 ws0">(</div><div class="t m0 x10 h8 ye ff2 fs4 fc0 sc0 ls0 ws0">attitu<span class="_ _5"></span>de,<span class="_ _a"> </span>velo<span class="_ _5"></span>c<span class="_ _2"></span>ity,<span class="_ _b"> </span>o<span class="_ _5"></span>r<span class="_ _a"> </span>po-</div><div class="t m0 xe h8 y10 ff2 fs4 fc0 sc0 ls0 ws0">sition</div><div class="t m0 x2 h8 y11 ff2 fs4 fc0 sc0 ls0 ws0">)</div><div class="t m0 x11 h8 y10 ff2 fs4 fc0 sc0 ls0 ws0">with<span class="_ _0"> </span>inp<span class="_ _5"></span>ut<span class="_ _a"> </span>provid<span class="_ _5"></span>ed<span class="_ _b"> </span>from<span class="_ _0"> </span>a<span class="_ _0"> </span>high-sp<span class="_ _5"></span>eed<span class="_ _b"> </span>a<span class="_ _5"></span>lgorith<span class="_ _5"></span>m<span class="_ _b"> </span>m<span class="_ _5"></span>e<span class="_ _2"></span>a<span class="_ _5"></span>suring<span class="_ _a"> </span>rec<span class="_ _2"></span>ti&#59022;<span class="_ _3"> </span>ed<span class="_ _a"> </span>dy<span class="_ _5"></span>nam<span class="_ _5"></span>ic<span class="_ _b"> </span>mot<span class="_ _5"></span>ion<span class="_ _a"> </span>within<span class="_ _0"> </span>the<span class="_ _0"> </span>pa<span class="_ _5"></span>rameter</div><div class="t m0 xe h8 y12 ff2 fs4 fc0 sc0 ls0 ws0">upd<span class="_ _5"></span>ate<span class="_ _0"> </span>time<span class="_ _0"> </span>in<span class="_ _5"></span>te<span class="_ _2"></span>rva<span class="_ _5"></span>l<span class="_ _0"> </span>[c<span class="_ _2"></span>o<span class="_ _5"></span>ning<span class="_ _0"> </span>for<span class="_ _0"> </span>a<span class="_ _5"></span>ttitude<span class="_ _0"> </span>up<span class="_ _5"></span>dating<span class="_ _5"></span>,<span class="_ _b"> </span>scull<span class="_ _5"></span>ing<span class="_ _a"> </span>for<span class="_ _3"> </span>velocity<span class="_ _3"> </span>updating<span class="_ _5"></span>,<span class="_ _a"> </span>and<span class="_ _0"> </span>scrollin<span class="_ _5"></span>g</div><div class="t m0 x12 h8 y13 ff2 fs4 fc0 sc0 ls0 ws0">(</div><div class="t m0 x13 h8 y12 ff2 fs4 fc0 sc0 ls0 ws0">writer&#8217;s<span class="_ _0"> </span>termino<span class="_ _5"></span>l-</div><div class="t m0 xe h8 y14 ff2 fs4 fc0 sc0 ls0 ws0">og<span class="_ _5"></span>y</div><div class="t m0 x14 h8 y15 ff2 fs4 fc0 sc0 ls0 ws0">)</div><div class="t m0 x15 h8 y14 ff2 fs4 fc0 sc0 ls0 ws0">for<span class="_ _a"> </span>h<span class="_ _5"></span>igh-resolutio<span class="_ _5"></span>n<span class="_ _b"> </span>positio<span class="_ _5"></span>n<span class="_ _b"> </span>u<span class="_"> </span>pd<span class="_ _5"></span>ating<span class="_ _5"></span>].<span class="_ _b"></span>The<span class="_ _a"> </span>a<span class="_ _5"></span>lgorith<span class="_ _5"></span>m<span class="_ _b"></span>design<span class="_ _0"> </span>app<span class="_ _5"></span>r<span class="_ _2"></span>oa<span class="_ _5"></span>ch<span class="_ _b"></span>accoun<span class="_ _5"></span>ts<span class="_ _b"> </span>for<span class="_ _0"> </span>ang<span class="_ _5"></span>ular<span class="_ _b"> </span>rate/sp<span class="_ _5"></span>e<span class="_ _2"></span>ci&#59022;<span class="_ _3"> </span>c<span class="_ _a"> </span>forc<span class="_ _2"></span>e</div><div class="t m0 xe h8 y16 ff2 fs4 fc0 sc0 ls0 ws0">acceleration<span class="_ _9"> </span>inp<span class="_ _5"></span>uts<span class="_ _3"> </span>fr<span class="_ _2"></span>o<span class="_ _5"></span>m<span class="_ _3"> </span>the<span class="_ _1"> </span>strap<span class="_ _5"></span>down<span class="_ _3"> </span>system<span class="_ _1"> </span>i<span class="_ _5"></span>nertial<span class="_ _3"> </span>sensors,<span class="_ _9"> </span>as<span class="_ _1"> </span>well<span class="_ _1"> </span>as<span class="_ _1"> </span>rotat<span class="_ _5"></span>ion<span class="_ _3"> </span>of<span class="_ _3"> </span>th<span class="_ _5"></span>e<span class="_ _3"> </span>n<span class="_ _5"></span>aviga<span class="_ _5"></span>tion<span class="_ _0"> </span>frame<span class="_ _1"> </span>used</div><div class="t m0 xe h8 y17 ff2 fs4 fc0 sc0 ls0 ws0">for<span class="_ _3"> </span>attitud<span class="_"> </span>e<span class="_ _0"> </span>refer<span class="_ _2"></span>encing<span class="_ _3"> </span>a<span class="_ _5"></span>nd<span class="_ _0"> </span>velocity<span class="_ _3"> </span>integratio<span class="_ _5"></span>n.<span class="_ _a"> </span>T<span class="_ _5"></span>he<span class="_ _0"> </span>Part<span class="_ _3"> </span>1<span class="_ _0"> </span>p<span class="_ _5"></span>aper</div><div class="t m0 x16 h8 y18 ff2 fs4 fc0 sc0 ls0 ws0">(</div><div class="t m0 x17 h8 y17 ff2 fs4 fc0 sc0 ls0 ws0">Savag<span class="_ _5"></span>e,<span class="_ _b"> </span>P<span class="_ _2"></span>.<span class="_ _0"> </span>G.,<span class="_ _3"> </span>&#8220;Strapd<span class="_ _5"></span>own<span class="_ _a"> </span>In<span class="_ _5"></span>e<span class="_ _2"></span>rtia<span class="_ _5"></span>l<span class="_ _0"> </span>Naviga<span class="_ _5"></span>tion</div><div class="t m0 xe h9 y19 ff2 fs4 fc0 sc0 ls0 ws0">Integrat<span class="_ _5"></span>ion<span class="_ _0"> </span>Alg<span class="_ _5"></span>orithm<span class="_ _3"> </span>Design<span class="_ _3"> </span>Part<span class="_ _0"> </span>1:<span class="_ _3"> </span>Attitud<span class="_ _5"></span>e<span class="_ _0"> </span>Alg<span class="_ _5"></span>orithms,&#8221;<span class="_ _a"> </span><span class="ff5">Journ<span class="_ _5"></span>al<span class="_ _0"> </span>of<span class="_ _3"> </span>Guida<span class="_ _5"></span>nce,<span class="_ _a"> </span>Co<span class="_ _5"></span>ntrol,<span class="_ _3"> </span>and<span class="_ _3"> </span>Dy<span class="_ _2"></span>na<span class="_ _5"></span>m<span class="_ _2"></span>i<span class="_ _5"></span>c<span class="_ _2"></span>s<span class="ff2">,<span class="_ _3"> </span>V<span class="_ _c"></span>ol.<span class="_ _3"> </span>21<span class="_ _5"></span>,</span></span></div><div class="t m0 xe h8 y1a ff2 fs4 fc0 sc0 ls0 ws0">No.<span class="_ _1"> </span>1<span class="_ _5"></span>,<span class="_ _3"> </span>199<span class="_ _5"></span>8,<span class="_ _3"> </span>pp.<span class="_ _1"> </span>19</div><div class="t m0 x18 ha y1b ff2 fs5 fc0 sc0 ls0 ws0">&#8211;</div><div class="t m0 x19 h8 y1a ff2 fs4 fc0 sc0 ls0 ws0">28</div><div class="t m0 x1a h8 y1c ff2 fs4 fc0 sc0 ls0 ws0">)</div><div class="t m0 x1b h8 y1a ff2 fs4 fc0 sc0 ls0 ws0">de&#59022;<span class="_ _a"> </span>n<span class="_ _5"></span>ed<span class="_ _3"> </span>the<span class="_ _1"> </span>ov<span class="_ _5"></span>e<span class="_ _2"></span>ra<span class="_ _5"></span>ll<span class="_ _3"> </span>design<span class="_ _1"> </span>requirement<span class="_ _1"> </span>for<span class="_ _3"> </span>th<span class="_ _5"></span>e<span class="_ _3"> </span>stra<span class="_ _5"></span>pdown<span class="_ _3"> </span>inertial<span class="_ _1"> </span>n<span class="_ _5"></span>aviga<span class="_ _5"></span>tion<span class="_ _0"> </span>in<span class="_"> </span>tegrat<span class="_ _5"></span>ion</div><div class="t m0 xe h8 y1d ff2 fs4 fc0 sc0 ls0 ws0">functio<span class="_ _5"></span>n<span class="_ _0"> </span>an<span class="_ _5"></span>d<span class="_ _0"> </span>developed<span class="_ _3"> </span>the<span class="_ _3"> </span>attitu<span class="_"> </span>de<span class="_ _3"> </span>upda<span class="_ _5"></span>ting<span class="_ _0"> </span>algo<span class="_ _5"></span>r<span class="_ _2"></span>i<span class="_ _5"></span>thms.<span class="_ _a"> </span>Th<span class="_ _5"></span>is<span class="_ _0"> </span>p<span class="_ _5"></span>aper<span class="_ _4"></span>,<span class="_ _3"> </span>Part<span class="_ _3"> </span>2,<span class="_ _0"> </span>d<span class="_ _5"></span>eals<span class="_ _0"> </span>with<span class="_ _3"> </span>d<span class="_ _5"></span>e<span class="_ _2"></span>sig<span class="_ _5"></span>n<span class="_ _0"> </span>of<span class="_ _3"> </span>the<span class="_ _3"> </span>acceleration</div><div class="t m0 xe h8 y1e ff2 fs4 fc0 sc0 ls0 ws0">transforma<span class="_ _5"></span>tion/velocity<span class="_ _3"> </span>in<span class="_ _5"></span>tegration<span class="_ _3"> </span>a<span class="_ _5"></span>nd<span class="_ _3"> </span>po<span class="_ _5"></span>s<span class="_ _2"></span>i<span class="_ _5"></span>tion<span class="_ _3"> </span>integra<span class="_ _5"></span>tion<span class="_ _3"> </span>a<span class="_ _5"></span>lgorithm<span class="_"> </span>s.<span class="_ _3"> </span>Altho<span class="_ _5"></span>ugh<span class="_ _3"> </span>Parts<span class="_ _1"> </span>1<span class="_ _1"> </span>a<span class="_ _5"></span>nd<span class="_ _3"> </span>2<span class="_ _1"> </span>often<span class="_ _1"> </span>cov<span class="_ _5"></span>e<span class="_ _2"></span>r<span class="_ _1"> </span>b<span class="_ _5"></span>a-</div><div class="t m0 xe h8 y1f ff2 fs4 fc0 sc0 ls0 ws0">sic<span class="_ _9"> </span>concepts,<span class="_ _9"> </span>the<span class="_ _1"> </span>ma<span class="_ _5"></span>te<span class="_ _2"></span>ria<span class="_ _5"></span>l<span class="_ _3"> </span>prese<span class="_ _2"></span>n<span class="_ _5"></span>ted<span class="_ _1"> </span>is<span class="_ _1"> </span>in<span class="_ _5"></span>tended<span class="_ _1"> </span>for<span class="_ _1"> </span>use<span class="_ _1"> </span>by<span class="_ _1"> </span>th<span class="_ _5"></span>e<span class="_ _3"> </span>pra<span class="_ _5"></span>c<span class="_ _2"></span>ti<span class="_ _5"></span>tioner<span class="_ _3"> </span>who<span class="_ _9"> </span>is<span class="_ _9"> </span>already<span class="_ _3"> </span>fa<span class="_ _5"></span>milia<span class="_ _5"></span>r<span class="_ _3"> </span>with<span class="_ _1"> </span>in<span class="_ _5"></span>e<span class="_ _2"></span>rtial</div><div class="t m0 xe h8 y20 ff2 fs4 fc0 sc0 ls0 ws0">navig<span class="_ _5"></span>atio<span class="_ _5"></span>n<span class="_ _b"> </span>fu<span class="_ _5"></span>ndam<span class="_ _5"></span>entals.</div><div class="t m0 x1c hb y21 ff2 fs3 fc0 sc0 ls0 ws0">Nome<span class="_ _5"></span>ncla<span class="_ _5"></span>tur<span class="_ _2"></span>e</div><div class="t m0 x1d hc y22 ff4 fs0 fc0 sc0 ls0 ws0">A</div><div class="t m0 x1e hd y23 ff6 fs0 fc0 sc0 ls0 ws0">;</div><div class="t m0 x1f hc y22 ff4 fs0 fc0 sc0 ls0 ws0">A</div><div class="t m0 x4 he y24 ff1 fs6 fc0 sc0 ls0 ws0">1</div><div class="t m0 x20 hd y23 ff6 fs0 fc0 sc0 ls0 ws0">;</div><div class="t m0 x21 hc y22 ff4 fs0 fc0 sc0 ls0 ws0">A</div><div class="t m0 x22 he y24 ff1 fs6 fc0 sc0 ls0 ws0">2</div><div class="t m0 x23 h2 y23 ff1 fs0 fc0 sc0 ls0 ws0">=<span class="_ _9"> </span>a<span class="_ _5"></span>rbit<span class="_ _5"></span>rary<span class="_ _0"> </span>c<span class="_ _5"></span>oord<span class="_ _5"></span>ina<span class="_ _5"></span>te<span class="_ _a"> </span>fr<span class="_ _5"></span>ames</div><div class="t m0 x1 hf y25 ff5 fs0 fc0 sc0 ls0 ws0">a</div><div class="t m0 x24 he y26 ff1 fs6 fc0 sc0 ls0 ws0">SF</div><div class="t m0 x23 h2 y25 ff1 fs0 fc0 sc0 ls0 ws0">=<span class="_ _9"> </span>s<span class="_ _5"></span>peci<span class="_ _5"></span>&#59022;<span class="_ _a"> </span>c<span class="_ _1"> </span>fo<span class="_ _5"></span>rce<span class="_ _3"> </span>de&#59022;<span class="_ _0"> </span>ne<span class="_ _5"></span>d<span class="_ _3"> </span>as<span class="_ _3"> </span>the<span class="_ _3"> </span>a<span class="_ _5"></span>cce<span class="_ _5"></span>lera<span class="_ _5"></span>tion</div><div class="t m0 x25 h2 y27 ff1 fs0 fc0 sc0 ls0 ws0">rela<span class="_ _5"></span>tive<span class="_ _0"> </span>to<span class="_ _3"> </span>n<span class="_ _5"></span>onr<span class="_ _5"></span>otat<span class="_ _5"></span>ing<span class="_ _a"> </span>in<span class="_ _5"></span>erti<span class="_ _5"></span>al<span class="_ _0"> </span>spa<span class="_ _5"></span>ce<span class="_ _0"> </span>p<span class="_ _5"></span>rod<span class="_ _5"></span>uce<span class="_ _5"></span>d</div><div class="t m0 x25 h2 y28 ff1 fs0 fc0 sc0 ls0 ws0">by<span class="_ _1"> </span>ap<span class="_"> </span>p<span class="_ _5"></span>lied<span class="_ _3"> </span>non<span class="_ _5"></span>grav<span class="_ _5"></span>itat<span class="_ _5"></span>iona<span class="_ _5"></span>l<span class="_ _5"></span>fo<span class="_ _5"></span>rces<span class="_ _5"></span>,</div><div class="t m0 x25 h2 y29 ff1 fs0 fc0 sc0 ls0 ws0">meas<span class="_ _5"></span>ure<span class="_ _5"></span>d<span class="_ _0"> </span>by<span class="_ _3"> </span>a<span class="_ _5"></span>cce<span class="_ _5"></span>lero<span class="_ _5"></span>meter<span class="_ _5"></span>s</div><div class="t m0 x1 hc y2a ff4 fs0 fc0 sc0 ls0 ws0">C</div><div class="t m0 x1e h10 y2b ff4 fs6 fc0 sc0 ls0 ws0">A</div><div class="t m0 x26 h11 y2c ff1 fs7 fc0 sc0 ls0 ws0">1</div><div class="t m0 x1e h10 y2d ff4 fs6 fc0 sc0 ls0 ws0">A</div><div class="t m0 x26 h11 y2e ff1 fs7 fc0 sc0 ls0 ws0">2</div><div class="t m0 x23 h2 y2f ff1 fs0 fc0 sc0 ls0 ws0">=<span class="_ _9"> </span>d<span class="_ _5"></span>irec<span class="_ _5"></span>tion<span class="_ _0"> </span>c<span class="_ _5"></span>osin<span class="_ _5"></span>e<span class="_ _0"> </span>ma<span class="_ _5"></span>trix<span class="_ _3"> </span>tha<span class="_ _5"></span>t<span class="_ _0"> </span>t<span class="_ _5"></span>rans<span class="_ _5"></span>form<span class="_ _5"></span>s<span class="_ _a"> </span>a<span class="_ _3"> </span>ve<span class="_ _5"></span>cto<span class="_ _5"></span>r<span class="_ _a"> </span>f<span class="_ _5"></span>rom</div><div class="t m0 x25 h2 y30 ff1 fs0 fc0 sc0 ls0 ws0">its</div><div class="t m0 x27 hc y31 ff4 fs0 fc0 sc0 ls0 ws0">A</div><div class="t m0 x28 he y32 ff1 fs6 fc0 sc0 ls0 ws0">2</div><div class="t m0 x29 h2 y30 ff1 fs0 fc0 sc0 ls0 ws0">frame<span class="_ _3"> </span>p<span class="_ _5"></span>roj<span class="_ _5"></span>ectio<span class="_ _5"></span>n<span class="_ _a"> </span>f<span class="_ _5"></span>orm<span class="_ _3"> </span>to<span class="_ _1"> </span>its</div><div class="t m0 x2a hc y31 ff4 fs0 fc0 sc0 ls0 ws0">A</div><div class="t m0 x2b he y32 ff1 fs6 fc0 sc0 ls0 ws0">1</div><div class="t m0 x2c h2 y30 ff1 fs0 fc0 sc0 ls0 ws0">fra<span class="_ _5"></span>me</div><div class="t m0 x25 h2 y33 ff1 fs0 fc0 sc0 ls0 ws0">pro<span class="_ _5"></span>ject<span class="_ _5"></span>ion<span class="_ _0"> </span>fo<span class="_ _5"></span>rm</div><div class="t m0 x1 h2 y34 ff1 fs0 fc0 sc0 ls0 ws0">I<span class="_ _d"> </span>=<span class="_ _9"> </span>id<span class="_ _5"></span>ent<span class="_ _5"></span>ity<span class="_ _3"> </span>matrix</div><div class="t m0 x1 hf y35 ff5 fs0 fc0 sc0 ls0 ws0">V</div><div class="t m0 x1e h10 y36 ff4 fs6 fc0 sc0 ls0 ws0">A</div><div class="t m0 x23 h2 y35 ff1 fs0 fc0 sc0 ls0 ws0">=<span class="_ _9"> </span>c<span class="_ _5"></span>olumn<span class="_ _3"> </span>m<span class="_ _5"></span>atrix<span class="_ _3"> </span>with<span class="_ _1"> </span>e<span class="_"> </span>le<span class="_ _5"></span>ments<span class="_ _3"> </span>eq<span class="_ _5"></span>ual<span class="_ _3"> </span>to<span class="_ _3"> </span>th<span class="_ _5"></span>e<span class="_ _3"> </span>pro<span class="_ _5"></span>ject<span class="_ _5"></span>ion</div><div class="t m0 x25 hf y37 ff1 fs0 fc0 sc0 ls0 ws0">of<span class="_ _1"> </span>vec<span class="_ _5"></span>tor<span class="_ _0"> </span><span class="ff5">V<span class="_ _e"> </span></span>on<span class="_ _3"> </span>f<span class="_ _5"></span>rame</div><div class="t m0 x2d hc y38 ff4 fs0 fc0 sc0 ls0 ws0">A</div><div class="t m0 x2e h2 y37 ff1 fs0 fc0 sc0 ls0 ws0">axe<span class="_ _5"></span>s</div><div class="t m0 x1 h2 y39 ff1 fs0 fc0 sc0 ls0 ws0">(</div><div class="t m0 x2f hf y3a ff5 fs0 fc0 sc0 ls0 ws0">V</div><div class="t m0 x30 h10 y3b ff4 fs6 fc0 sc0 ls0 ws0">A</div><div class="t m0 x31 h12 y3c ff3 fs0 fc0 sc0 ls0 ws0">&#163;</div><div class="t m0 x20 h2 y39 ff1 fs0 fc0 sc0 ls0 ws0">)</div><div class="t m0 x23 h2 y3a ff1 fs0 fc0 sc0 ls0 ws0">=<span class="_ _9"> </span>s<span class="_ _5"></span>kew<span class="_ _3"> </span>symme<span class="_ _5"></span>tric</div><div class="t m0 x32 h2 y39 ff1 fs0 fc0 sc0 ls0 ws0">(</div><div class="t m0 x33 h2 y3a ff1 fs0 fc0 sc0 ls0 ws0">or<span class="_ _1"> </span>cr<span class="_ _5"></span>oss<span class="_ _3"> </span>pro<span class="_ _5"></span>duc<span class="_ _5"></span>t</div><div class="t m0 x34 h2 y39 ff1 fs0 fc0 sc0 ls0 ws0">)</div><div class="t m0 x35 hf y3a ff1 fs0 fc0 sc0 ls0 ws0">form<span class="_ _1"> </span>of<span class="_ _3"> </span><span class="ff5">V</span></div><div class="t m0 x36 h10 y3b ff4 fs6 fc0 sc0 ls0 ws0">A</div><div class="t m0 x25 h2 y3d ff1 fs0 fc0 sc0 ls0 ws0">rep<span class="_ _5"></span>rese<span class="_ _5"></span>nte<span class="_ _5"></span>d<span class="_ _a"> </span>by<span class="_ _3"> </span>t<span class="_ _5"></span>he<span class="_ _3"> </span>sq<span class="_ _5"></span>uare<span class="_ _0"> </span>ma<span class="_ _5"></span>trix</div><div class="t m0 x37 h2 y3e ff1 fs0 fc0 sc0 ls0 ws0">0</div><div class="t m0 x19 h12 y3f ff3 fs0 fc0 sc0 ls0 ws0">&#161;<span class="_ _5"></span><span class="ff4">V</span></div><div class="t m0 x38 h10 y40 ff4 fs6 fc0 sc0 ls0 ws0">Z<span class="_ _a"> </span>A</div><div class="t m0 x39 hc y3f ff4 fs0 fc0 sc0 ls0 ws0">V</div><div class="t m0 x3a h10 y40 ff4 fs6 fc0 sc0 ls0 ws0">Y<span class="_ _0"> </span>A</div><div class="t m0 x3b hc y41 ff4 fs0 fc0 sc0 ls0 ws0">V</div><div class="t m0 x3c h10 y42 ff4 fs6 fc0 sc0 ls0 ws0">Z<span class="_ _a"> </span>A</div><div class="t m0 x1a h2 y43 ff1 fs0 fc0 sc0 ls0 ws0">0</div><div class="t m0 x3d h12 y41 ff3 fs0 fc0 sc0 ls0 ws0">&#161;<span class="_ _5"></span><span class="ff4">V</span></div><div class="t m0 x3e h10 y42 ff4 fs6 fc0 sc0 ls0 ws0">X<span class="_ _a"> </span>A</div><div class="t m0 x3f h12 y44 ff3 fs0 fc0 sc0 ls0 ws0">&#161;<span class="_ _5"></span><span class="ff4">V</span></div><div class="t m0 x40 h10 y45 ff4 fs6 fc0 sc0 ls0 ws0">Y<span class="_ _0"> </span>A</div><div class="t m0 x2d hc y44 ff4 fs0 fc0 sc0 ls0 ws0">V</div><div class="t m0 x1a h10 y45 ff4 fs6 fc0 sc0 ls0 ws0">X<span class="_ _a"> </span>A</div><div class="t m0 x3a h2 y46 ff1 fs0 fc0 sc0 ls0 ws0">0</div><div class="t m0 x25 h2 y47 ff1 fs0 fc0 sc0 ls0 ws0">wher<span class="_ _5"></span>e</div><div class="t m0 x15 hc y48 ff4 fs0 fc0 sc0 ls0 ws0">V</div><div class="t m0 x3 h10 y49 ff4 fs6 fc0 sc0 ls0 ws0">X<span class="_ _a"> </span>A</div><div class="t m0 x41 hd y47 ff6 fs0 fc0 sc0 ls0 ws0">;</div><div class="t m0 x3f hc y48 ff4 fs0 fc0 sc0 ls0 ws0">V</div><div class="t m0 x42 h10 y49 ff4 fs6 fc0 sc0 ls0 ws0">Y<span class="_ _0"> </span>A</div><div class="t m0 x43 hd y47 ff6 fs0 fc0 sc0 ls0 ws0">;</div><div class="t m0 x33 hc y48 ff4 fs0 fc0 sc0 ls0 ws0">V</div><div class="t m0 x44 h10 y49 ff4 fs6 fc0 sc0 ls0 ws0">Z<span class="_ _a"> </span>A</div><div class="t m0 x45 h2 y47 ff1 fs0 fc0 sc0 ls0 ws0">are<span class="_ _3"> </span>th<span class="_ _5"></span>e<span class="_ _3"> </span>comp<span class="_ _5"></span>one<span class="_ _5"></span>nts<span class="_ _0"> </span>of</div><div class="t m0 x25 hf y4a ff5 fs0 fc0 sc0 ls0 ws0">V</div><div class="t m0 x46 h10 y4b ff4 fs6 fc0 sc0 ls0 ws0">A</div><div class="t m0 x27 hf y4a ff1 fs0 fc0 sc0 ls0 ws0">;<span class="_ _3"> </span>mat<span class="_ _5"></span>rix<span class="_ _3"> </span>pr<span class="_ _5"></span>odu<span class="_ _5"></span>ct<span class="_ _a"> </span>o<span class="_ _5"></span>f<span class="_ _3"> </span><span class="ff6">.<span class="ff5">V</span></span></div><div class="t m0 x47 h10 y4b ff4 fs6 fc0 sc0 ls0 ws0">A</div><div class="t m0 x48 h12 y4c ff3 fs0 fc0 sc0 ls0 ws0">&#163;</div><div class="t m0 xb h2 y4d ff1 fs0 fc0 sc0 ls0 ws0">)</div><div class="t m0 x49 h2 y4a ff1 fs0 fc0 sc0 ls0 ws0">with<span class="_ _3"> </span>a<span class="_ _5"></span>not<span class="_ _5"></span>her</div><div class="t m0 x4a hc y4c ff4 fs0 fc0 sc0 ls0 ws0">A</div><div class="t m0 x25 hf y4e ff1 fs0 fc0 sc0 ls0 ws0">fra<span class="_ _5"></span>me<span class="_ _3"> </span>vecto<span class="_ _5"></span>r<span class="_ _0"> </span>eq<span class="_ _5"></span>ual<span class="_ _5"></span>s<span class="_ _a"> </span>t<span class="_ _5"></span>he<span class="_ _3"> </span>cr<span class="_ _5"></span>oss<span class="_ _3"> </span>prod<span class="_ _5"></span>uct<span class="_ _0"> </span>o<span class="_ _5"></span>f<span class="_ _3"> </span><span class="ff5">V</span></div><div class="t m0 x4b h10 y4f ff4 fs6 fc0 sc0 ls0 ws0">A</div><div class="t m0 x25 h2 y50 ff1 fs0 fc0 sc0 ls0 ws0">with<span class="_ _1"> </span>th<span class="_ _5"></span>e<span class="_ _3"> </span>vect<span class="_ _5"></span>or<span class="_ _0"> </span>in<span class="_ _3"> </span>t<span class="_ _5"></span>he</div><div class="t m0 x45 hc y51 ff4 fs0 fc0 sc0 ls0 ws0">A</div><div class="t m0 x38 h2 y50 ff1 fs0 fc0 sc0 ls0 ws0">fram<span class="_ _5"></span>e</div><div class="t m0 x1 h13 y52 ff7 fs0 fc0 sc0 ls0 ws0">!</div><div class="t m0 x1e h10 y53 ff4 fs6 fc0 sc0 ls0 ws0">A</div><div class="t m0 x26 h11 y54 ff1 fs7 fc0 sc0 ls0 ws0">1</div><div class="t m0 x31 h10 y53 ff4 fs6 fc0 sc0 ls0 ws0">A</div><div class="t m0 x4 h11 y54 ff1 fs7 fc0 sc0 ls0 ws0">2</div><div class="t m0 x23 h2 y52 ff1 fs0 fc0 sc0 ls0 ws0">=<span class="_ _9"> </span>a<span class="_ _5"></span>ngu<span class="_ _5"></span>lar<span class="_ _0"> </span>r<span class="_ _5"></span>ate<span class="_ _3"> </span>of<span class="_ _3"> </span>c<span class="_ _5"></span>oor<span class="_ _5"></span>dina<span class="_ _5"></span>te<span class="_ _a"> </span>fra<span class="_ _5"></span>me</div><div class="t m0 x3e hc y55 ff4 fs0 fc0 sc0 ls0 ws0">A</div><div class="t m0 x4c he y53 ff1 fs6 fc0 sc0 ls0 ws0">2</div><div class="t m0 x4d h2 y52 ff1 fs0 fc0 sc0 ls0 ws0">rela<span class="_ _5"></span>tive<span class="_ _0"> </span>to</div><div class="t m0 x25 h2 y56 ff1 fs0 fc0 sc0 ls0 ws0">coo<span class="_ _5"></span>rdi<span class="_ _5"></span>nate<span class="_ _0"> </span>fra<span class="_ _5"></span>me</div><div class="t m0 x4e hc y57 ff4 fs0 fc0 sc0 ls0 ws0">A</div><div class="t m0 x4f he y58 ff1 fs6 fc0 sc0 ls0 ws0">1</div><div class="t m0 x50 h2 y56 ff1 fs0 fc0 sc0 ls0 ws0">;<span class="_ _3"> </span>wh<span class="_ _5"></span>en</div><div class="t m0 xa hc y57 ff4 fs0 fc0 sc0 ls0 ws0">A</div><div class="t m0 x51 he y58 ff1 fs6 fc0 sc0 ls0 ws0">1</div><div class="t m0 x52 h2 y56 ff1 fs0 fc0 sc0 ls0 ws0">is<span class="_ _3"> </span>th<span class="_ _5"></span>e<span class="_ _3"> </span>iner<span class="_ _5"></span>tial</div><div class="t m0 x53 hc y57 ff4 fs0 fc0 sc0 ls0 ws0">I</div><div class="t m0 x6 h2 y56 ff1 fs0 fc0 sc0 ls0 ws0">fra<span class="_ _5"></span>me,</div><div class="t m0 x25 h13 y59 ff7 fs0 fc0 sc0 ls0 ws0">!</div><div class="t m0 x46 h10 y5a ff4 fs6 fc0 sc0 ls0 ws0">A</div><div class="t m0 x27 h11 y5b ff1 fs7 fc0 sc0 ls0 ws0">1</div><div class="t m0 x54 h10 y5a ff4 fs6 fc0 sc0 ls0 ws0">A</div><div class="t m0 x55 h11 y5b ff1 fs7 fc0 sc0 ls0 ws0">2</div><div class="t m0 x15 h2 y59 ff1 fs0 fc0 sc0 ls0 ws0">is<span class="_ _3"> </span>t<span class="_ _5"></span>he<span class="_ _3"> </span>ang<span class="_ _5"></span>ula<span class="_ _5"></span>r<span class="_ _0"> </span>rate<span class="_ _3"> </span>me<span class="_ _5"></span>asur<span class="_ _5"></span>ed<span class="_ _0"> </span>by<span class="_ _3"> </span>a<span class="_ _5"></span>ngu<span class="_ _5"></span>lar<span class="_ _3"> </span>rate</div><div class="t m0 x25 h2 y5c ff1 fs0 fc0 sc0 ls0 ws0">sen<span class="_ _5"></span>sor<span class="_ _5"></span>s<span class="_ _a"> </span>mo<span class="_ _5"></span>un<span class="_ _5"></span>ted<span class="_ _3"> </span>on<span class="_ _3"> </span>fra<span class="_ _5"></span>me</div><div class="t m0 x56 hc y5d ff4 fs0 fc0 sc0 ls0 ws0">A</div><div class="t m0 xb he y5e ff1 fs6 fc0 sc0 ls0 ws0">2</div><div class="t m0 x57 hb y5f ff2 fs3 fc0 sc0 ls0 ws0">I.<span class="_ _f"> </span>Introductio<span class="_ _5"></span>n</div><div class="t m0 x1 h14 y60 ff2 fs8 fc0 sc0 ls0 ws0">A</div><div class="t m0 x58 h2 y61 ff1 fs0 fc0 sc0 ls0 ws0">STRAPDO<span class="_ _c"></span>W<span class="_ _5"></span>N<span class="_ _10"> </span>iner<span class="_ _5"></span>tial<span class="_ _9"> </span>n<span class="_"> </span>av<span class="_ _5"></span>igat<span class="_ _5"></span>ion<span class="_ _3"> </span>s<span class="_ _5"></span>yste<span class="_ _5"></span>m</div><div class="t m0 x59 h2 y62 ff1 fs0 fc0 sc0 ls0 ws0">(</div><div class="t m0 x35 h2 y61 ff1 fs0 fc0 sc0 ls0 ws0">INS</div><div class="t m0 x5a h2 y62 ff1 fs0 fc0 sc0 ls0 ws0">)</div><div class="t m0 xc h2 y61 ff1 fs0 fc0 sc0 ls0 ws0">is<span class="_ _e"> </span>ty<span class="_ _5"></span>pic<span class="_ _5"></span>ally</div><div class="t m0 x58 h2 y63 ff1 fs0 fc0 sc0 ls0 ws0">comp<span class="_ _5"></span>osed<span class="_ _1"> </span>o<span class="_ _5"></span>f<span class="_ _e"> </span>an<span class="_ _9"> </span>o<span class="_ _5"></span>rtho<span class="_ _5"></span>go<span class="_ _5"></span>nal<span class="_ _3"> </span>th<span class="_ _5"></span>ree-<span class="_ _5"></span>axis<span class="_ _3"> </span>s<span class="_ _5"></span>et<span class="_ _9"> </span>o<span class="_ _5"></span>f<span class="_ _1"> </span>i<span class="_ _5"></span>nert<span class="_ _5"></span>ial<span class="_ _1"> </span>a<span class="_ _5"></span>ngu<span class="_ _5"></span>lar</div><div class="t m0 x1 h2 y64 ff1 fs0 fc0 sc0 ls0 ws0">rat<span class="_ _5"></span>e<span class="_ _11"> </span>sen<span class="_ _5"></span>sor<span class="_ _5"></span>s<span class="_ _9"> </span>an<span class="_ _5"></span>d<span class="_ _11"> </span>ac<span class="_ _5"></span>cele<span class="_ _5"></span>rome<span class="_ _5"></span>ters<span class="_ _9"> </span>pr<span class="_ _5"></span>ovid<span class="_ _5"></span>ing<span class="_ _9"> </span>d<span class="_ _5"></span>ata<span class="_ _11"> </span>t<span class="_ _5"></span>o<span class="_ _11"> </span>th<span class="_ _5"></span>e<span class="_ _11"> </span>INS<span class="_ _10"> </span>co<span class="_ _5"></span>m-</div><div class="t m0 x1 h2 y65 ff1 fs0 fc0 sc0 ls0 ws0">pu<span class="_ _5"></span>ter.<span class="_ _0"> </span>The<span class="_ _9"> </span>i<span class="_ _5"></span>nert<span class="_ _5"></span>ial<span class="_ _0"> </span>s<span class="_ _5"></span>ens<span class="_ _5"></span>ors<span class="_ _3"> </span>are<span class="_ _1"> </span>di<span class="_ _5"></span>rect<span class="_ _5"></span>ly<span class="_ _0"> </span>mo<span class="_ _5"></span>unt<span class="_ _5"></span>ed</div><div class="t m0 x34 h2 y66 ff1 fs0 fc0 sc0 ls0 ws0">(</div><div class="t m0 x4c h2 y65 ff1 fs0 fc0 sc0 ls0 ws0">stra<span class="_ _5"></span>pdown</div><div class="t m0 x53 h2 y66 ff1 fs0 fc0 sc0 ls0 ws0">)</div><div class="t m0 x5b h2 y65 ff1 fs0 fc0 sc0 ls0 ws0">to<span class="_ _9"> </span>th<span class="_ _5"></span>e</div><div class="t m0 x1 h2 y67 ff1 fs0 fc0 sc0 ls0 ws0">INS<span class="_ _1"> </span>c<span class="_ _5"></span>has<span class="_ _5"></span>sis<span class="_ _0"> </span>st<span class="_ _5"></span>ruct<span class="_ _5"></span>ure<span class="_ _0"> </span>in<span class="_ _1"> </span>co<span class="_ _5"></span>ntr<span class="_ _5"></span>ast<span class="_ _0"> </span>wit<span class="_ _5"></span>h<span class="_ _3"> </span>o<span class="_ _5"></span>rigi<span class="_ _5"></span>nal<span class="_ _0"> </span>INS<span class="_ _1"> </span>te<span class="_ _5"></span>chn<span class="_ _5"></span>olog<span class="_ _5"></span>y<span class="_ _a"> </span>th<span class="_ _5"></span>at</div><div class="t m0 x1 h2 y68 ff1 fs0 fc0 sc0 ls0 ws0">uti<span class="_ _5"></span>lize<span class="_ _5"></span>d<span class="_ _e"> </span>an<span class="_ _10"> </span>a<span class="_ _5"></span>ctive<span class="_ _e"> </span>mu<span class="_ _5"></span>ltia<span class="_ _5"></span>xis<span class="_ _11"> </span>gi<span class="_ _5"></span>mbal<span class="_ _10"> </span>isol<span class="_ _5"></span>atio<span class="_ _5"></span>n<span class="_ _e"> </span>moun<span class="_ _5"></span>ting<span class="_ _11"> </span>a<span class="_ _5"></span>sse<span class="_ _5"></span>mbly</div><div class="t m0 x1e h15 y69 ff1 fs4 fc0 sc0 ls0 ws0">Received<span class="_ _3"> </span>July<span class="_ _3"> </span>7,<span class="_ _3"> </span>1<span class="_"> </span>9<span class="_ _5"></span>97;<span class="_ _3"> </span>re<span class="_ _2"></span>vision<span class="_ _3"> </span>receive<span class="_ _2"></span>d<span class="_ _1"> </span>Oct.<span class="_ _3"> </span>9<span class="_ _5"></span>,<span class="_ _3"> </span>199<span class="_ _5"></span>7;<span class="_ _a"> </span>accepted<span class="_ _1"> </span>fo<span class="_ _5"></span>r<span class="_ _3"> </span>pub<span class="_"> </span>-</div><div class="t m0 x1 h15 y6a ff1 fs4 fc0 sc0 ls0 ws0">lication<span class="_ _11"> </span>Oct.<span class="_ _11"> </span>9<span class="_"> </span>,<span class="_ _e"> </span>1<span class="_ _5"></span>997.<span class="_ _e"> </span>Cop<span class="_ _5"></span>yrigh<span class="_ _5"></span>t</div><div class="t m0 x5c h16 y6b ff8 fs4 fc0 sc0 ls0 ws0">c<span class="_ _12"></span><span class="ff3">&#176;</span></div><div class="t m0 x44 h15 y6a ff1 fs4 fc0 sc0 ls0 ws0">199<span class="_ _5"></span>7<span class="_ _1"> </span>b<span class="_ _5"></span>y<span class="_ _e"> </span>Strap<span class="_ _5"></span>down<span class="_ _9"> </span>Associates,<span class="_ _11"> </span>Inc.</div><div class="t m0 x1 h15 y6c ff1 fs4 fc0 sc0 ls0 ws0">Pub<span class="_ _5"></span>lished<span class="_ _0"> </span>b<span class="_ _5"></span>y<span class="_ _3"> </span>the<span class="_ _3"> </span>American<span class="_ _1"> </span>Institu<span class="_ _5"></span>te<span class="_ _0"> </span>of<span class="_ _3"> </span>Aeron<span class="_ _5"></span>autics<span class="_ _3"> </span>and<span class="_ _3"> </span>Astron<span class="_ _5"></span>autics,<span class="_ _3"> </span>Inc.,</div><div class="t m0 x1 h15 y6d ff1 fs4 fc0 sc0 ls0 ws0">with<span class="_ _3"> </span>permissio<span class="_ _5"></span>n.</div><div class="t m0 x1e h17 y6e ff3 fs6 fc0 sc0 ls0 ws0">&#164;</div><div class="t m0 x30 h15 y6f ff1 fs4 fc0 sc0 ls0 ws0">Presiden<span class="_ _5"></span>t.<span class="_ _3"> </span>Member<span class="_ _0"> </span>AIAA.</div><div class="t m0 x5d h2 y21 ff1 fs0 fc0 sc0 ls0 ws0">to<span class="_ _e"> </span>i<span class="_ _5"></span>sola<span class="_ _5"></span>te<span class="_ _9"> </span>th<span class="_ _5"></span>e<span class="_ _9"> </span>se<span class="_ _5"></span>nso<span class="_ _5"></span>rs<span class="_ _1"> </span>fr<span class="_ _5"></span>om<span class="_ _9"> </span>r<span class="_ _5"></span>ota<span class="_ _5"></span>tion<span class="_ _5"></span>.<span class="_ _3"> </span>Th<span class="_ _5"></span>e<span class="_ _9"> </span>p<span class="_ _5"></span>rinc<span class="_ _5"></span>ipa<span class="_ _5"></span>l<span class="_ _3"> </span>s<span class="_ _5"></span>oftwar<span class="_ _5"></span>e<span class="_ _1"> </span>f<span class="_ _5"></span>unc<span class="_ _5"></span>-</div><div class="t m0 x5d h2 y70 ff1 fs0 fc0 sc0 ls0 ws0">tio<span class="_ _5"></span>ns<span class="_ _9"> </span>execu<span class="_ _5"></span>ted<span class="_ _1"> </span>in<span class="_ _e"> </span>th<span class="_ _5"></span>e<span class="_ _1"> </span>s<span class="_ _5"></span>trap<span class="_ _5"></span>down<span class="_ _3"> </span>I<span class="_ _5"></span>NS<span class="_ _1"> </span>c<span class="_ _5"></span>ompu<span class="_ _5"></span>ter<span class="_ _1"> </span>ar<span class="_ _5"></span>e<span class="_ _1"> </span>t<span class="_ _5"></span>he<span class="_ _9"> </span>in<span class="_ _5"></span>tegr<span class="_ _5"></span>atio<span class="_ _5"></span>n</div><div class="t m0 x5d h2 y71 ff1 fs0 fc0 sc0 ls0 ws0">of<span class="_ _9"> </span>se<span class="_"> </span>n<span class="_ _5"></span>sed<span class="_ _3"> </span>a<span class="_ _5"></span>ngu<span class="_ _5"></span>lar<span class="_ _3"> </span>rate<span class="_ _1"> </span>in<span class="_ _5"></span>to<span class="_ _3"> </span>at<span class="_ _5"></span>titu<span class="_ _5"></span>de,<span class="_ _3"> </span>tran<span class="_ _5"></span>sfor<span class="_ _5"></span>matio<span class="_ _5"></span>n<span class="_ _a"> </span>o<span class="_ _5"></span>f<span class="_ _3"> </span>ac<span class="_ _5"></span>cel<span class="_ _5"></span>erome<span class="_ _5"></span>-</div><div class="t m0 x5d h2 y72 ff1 fs0 fc0 sc0 ls0 ws0">ter<span class="_ _e"> </span>se<span class="_ _5"></span>nse<span class="_ _5"></span>d<span class="_ _3"> </span>s<span class="_ _5"></span>pec<span class="_ _5"></span>i&#59022;<span class="_ _a"> </span>c<span class="_ _e"> </span>forc<span class="_ _5"></span>e<span class="_ _1"> </span>a<span class="_"> </span>c<span class="_ _5"></span>cele<span class="_ _5"></span>ratio<span class="_ _5"></span>n<span class="_ _3"> </span>into<span class="_ _9"> </span>a<span class="_ _11"> </span>navig<span class="_ _5"></span>atio<span class="_ _5"></span>n<span class="_ _3"> </span>coo<span class="_ _5"></span>rdin<span class="_ _5"></span>ate</div><div class="t m0 x5d h2 y73 ff1 fs0 fc0 sc0 ls0 ws0">fra<span class="_ _5"></span>me,<span class="_ _a"> </span>a<span class="_ _5"></span>ddit<span class="_ _5"></span>ion<span class="_ _a"> </span>o<span class="_ _5"></span>f<span class="_ _a"> </span>so<span class="_ _5"></span>ftware<span class="_ _0"> </span>mode<span class="_ _5"></span>led<span class="_ _a"> </span>g<span class="_ _5"></span>ravit<span class="_ _5"></span>y<span class="_ _a"> </span>to<span class="_ _0"> </span>the<span class="_ _0"> </span>tr<span class="_ _5"></span>ans<span class="_ _5"></span>forme<span class="_ _5"></span>d<span class="_ _b"></span>s<span class="_ _5"></span>pe-</div><div class="t m0 x5d h2 y74 ff1 fs0 fc0 sc0 ls0 ws0">ci&#59022;<span class="_ _3"> </span>c<span class="_ _3"> </span>f<span class="_ _5"></span>orc<span class="_ _5"></span>e<span class="_ _0"> </span>to<span class="_ _1"> </span>c<span class="_ _5"></span>alcu<span class="_ _5"></span>late<span class="_ _3"> </span>tota<span class="_ _5"></span>l<span class="_ _0"> </span>a<span class="_ _5"></span>ccel<span class="_ _5"></span>erat<span class="_ _5"></span>ion,<span class="_ _0"> </span>and<span class="_ _1"> </span>do<span class="_ _5"></span>ubl<span class="_ _5"></span>e<span class="_ _0"> </span>i<span class="_"> </span>nt<span class="_ _5"></span>egrat<span class="_ _5"></span>ion<span class="_ _0"> </span>of</div><div class="t m0 x5d h2 y75 ff1 fs0 fc0 sc0 ls0 ws0">tot<span class="_ _5"></span>al<span class="_ _e"> </span>a<span class="_ _5"></span>ccel<span class="_ _5"></span>erat<span class="_ _5"></span>ion<span class="_ _9"> </span>into<span class="_ _11"> </span>ve<span class="_ _5"></span>loc<span class="_ _5"></span>ity<span class="_ _9"> </span>a<span class="_ _5"></span>nd<span class="_ _11"> </span>po<span class="_ _5"></span>siti<span class="_ _5"></span>on.<span class="_ _9"> </span>The<span class="_ _10"> </span>k<span class="_ _5"></span>ey<span class="_ _e"> </span>el<span class="_ _5"></span>ement<span class="_ _11"> </span>in</div><div class="t m0 x5d h2 y76 ff1 fs0 fc0 sc0 ls0 ws0">the<span class="_ _11"> </span>I<span class="_ _5"></span>NS<span class="_ _e"> </span>so<span class="_ _5"></span>ftware<span class="_ _9"> </span>d<span class="_ _5"></span>esig<span class="_ _5"></span>n<span class="_ _9"> </span>p<span class="_ _5"></span>roce<span class="_"> </span>ss<span class="_ _9"> </span>i<span class="_ _5"></span>s<span class="_ _e"> </span>th<span class="_ _5"></span>e<span class="_ _9"> </span>d<span class="_ _5"></span>evelo<span class="_ _5"></span>pmen<span class="_ _5"></span>t<span class="_ _3"> </span>of<span class="_ _11"> </span>re<span class="_ _5"></span>peti<span class="_ _5"></span>tive</div><div class="t m0 x5d h2 y77 ff1 fs0 fc0 sc0 ls0 ws0">dig<span class="_ _5"></span>ital<span class="_ _3"> </span>algo<span class="_ _5"></span>rith<span class="_ _5"></span>ms<span class="_ _a"> </span>tha<span class="_ _5"></span>t<span class="_ _0"> </span>wi<span class="_ _5"></span>ll<span class="_ _3"> </span>&#59023;<span class="_ _0"> </span>awle<span class="_ _5"></span>ssly<span class="_ _3"> </span>execu<span class="_ _5"></span>te<span class="_ _a"> </span>th<span class="_ _5"></span>e<span class="_ _0"> </span>a<span class="_ _5"></span>ttit<span class="_ _5"></span>ude,<span class="_ _0"> </span>vel<span class="_ _5"></span>ocit<span class="_ _5"></span>y<span class="_ _c"></span>,</div><div class="t m0 x5d h2 y78 ff1 fs0 fc0 sc0 ls0 ws0">and<span class="_ _0"> </span>p<span class="_ _5"></span>osit<span class="_ _5"></span>ion<span class="_ _b"> </span>d<span class="_ _5"></span>igit<span class="_ _5"></span>al<span class="_ _b"></span>int<span class="_ _5"></span>egrat<span class="_ _5"></span>ion<span class="_ _b"></span>fun<span class="_ _5"></span>cti<span class="_ _5"></span>ons<span class="_ _b"></span>in<span class="_ _0"> </span>th<span class="_ _5"></span>e<span class="_ _a"> </span>pr<span class="_ _5"></span>esen<span class="_ _5"></span>ce<span class="_ _b"> </span>o<span class="_ _5"></span>f<span class="_ _a"> </span>dyn<span class="_ _5"></span>amic</div><div class="t m0 x5d h2 y79 ff1 fs0 fc0 sc0 ls0 ws0">ang<span class="_ _5"></span>ula<span class="_ _5"></span>r<span class="_ _0"> </span>ra<span class="_ _5"></span>te/<span class="_ _2"></span>sp<span class="_ _5"></span>eci<span class="_ _5"></span>&#59022;<span class="_ _b"></span>c<span class="_ _3"> </span>f<span class="_ _5"></span>orc<span class="_ _5"></span>e<span class="_ _0"> </span>a<span class="_"> </span>c<span class="_ _5"></span>cele<span class="_ _5"></span>rati<span class="_ _5"></span>on<span class="_ _a"> </span>inp<span class="_ _5"></span>uts<span class="_ _5"></span>.</div><div class="t m0 x5e h2 y7a ff1 fs0 fc0 sc0 ls0 ws0">As<span class="_ _10"> </span>d<span class="_ _5"></span>iscu<span class="_ _5"></span>ssed<span class="_ _11"> </span>in<span class="_ _13"> </span>Part<span class="_ _10"> </span>1</div><div class="t m0 x5f h2 y7b ff1 fs0 fc0 sc0 ls0 ws0">(</div><div class="t m0 x60 h2 y7a ff1 fs0 fc0 sc0 ls0 ws0">Ref.<span class="_ _13"> </span>1</div><div class="t m0 x61 h2 y7b ff1 fs0 fc0 sc0 ls0 ws0">)</div><div class="t m0 x62 h2 y7a ff1 fs0 fc0 sc0 ls0 ws0">,<span class="_ _10"> </span>mo<span class="_ _5"></span>st<span class="_ _10"> </span>mod<span class="_ _5"></span>ern-<span class="_ _5"></span>day<span class="_ _11"> </span>st<span class="_ _5"></span>rapd<span class="_ _5"></span>own</div><div class="t m0 x5d h2 y7c ff1 fs0 fc0 sc0 ls0 ws0">INSs<span class="_ _14"> </span>utili<span class="_ _5"></span>ze<span class="_ _10"> </span>at<span class="_ _5"></span>titud<span class="_ _5"></span>e<span class="_ _e"> </span>u<span class="_ _5"></span>pda<span class="_ _5"></span>ting<span class="_ _10"> </span>al<span class="_ _5"></span>gor<span class="_ _5"></span>ithms<span class="_ _11"> </span>b<span class="_ _5"></span>ase<span class="_ _5"></span>d<span class="_ _11"> </span>o<span class="_ _5"></span>n<span class="_ _10"> </span>a<span class="_ _13"> </span>t<span class="_ _5"></span>w<span class="_ _2"></span>o<span class="_ _5"></span>-sp<span class="_ _5"></span>eed</div><div class="t m0 x5d h2 y7d ff1 fs0 fc0 sc0 ls0 ws0">app<span class="_ _5"></span>roa<span class="_ _5"></span>ch</div><div class="t m0 x63 he y7e ff1 fs6 fc0 sc0 ls0 ws0">2<span class="ff3">&#161;<span class="_ _5"></span></span>4</div><div class="t m0 x64 h2 y7d ff1 fs0 fc0 sc0 ls0 ws0">:<span class="_ _a"> </span>a<span class="_ _a"> </span>h<span class="_ _5"></span>ighe<span class="_ _5"></span>r-ord<span class="_ _5"></span>er<span class="_ _5"></span>upd<span class="_ _5"></span>atin<span class="_ _5"></span>g<span class="_ _5"></span>alg<span class="_ _5"></span>orit<span class="_ _5"></span>hm<span class="_ _5"></span>is<span class="_ _0"> </span>pr<span class="_ _5"></span>oce<span class="_ _5"></span>ssed<span class="_ _b"></span>at<span class="_ _b"> </span>m<span class="_ _5"></span>od-</div><div class="t m0 x5d h2 y7f ff1 fs0 fc0 sc0 ls0 ws0">era<span class="_ _5"></span>te<span class="_ _3"> </span>rep<span class="_ _5"></span>etit<span class="_ _5"></span>ion<span class="_ _a"> </span>r<span class="_ _5"></span>ate<span class="_ _3"> </span>us<span class="_ _5"></span>ing<span class="_ _3"> </span>inp<span class="_ _5"></span>uts<span class="_ _3"> </span>fro<span class="_ _5"></span>m<span class="_ _0"> </span>a<span class="_ _9"> </span>hi<span class="_ _5"></span>gh-<span class="_ _5"></span>spee<span class="_ _5"></span>d<span class="_ _b"> </span>a<span class="_ _5"></span>lgo<span class="_ _5"></span>rithm.<span class="_ _0"> </span>Th<span class="_ _5"></span>e</div><div class="t m0 x5d h2 y80 ff1 fs0 fc0 sc0 ls0 ws0">mod<span class="_ _5"></span>erat<span class="_ _5"></span>e-sp<span class="_ _5"></span>eed<span class="_ _b"> </span>ro<span class="_ _5"></span>utin<span class="_ _5"></span>e<span class="_ _b"> </span>c<span class="_ _5"></span>an<span class="_ _0"> </span>b<span class="_ _5"></span>e<span class="_ _0"> </span>rep<span class="_ _5"></span>rese<span class="_ _5"></span>nte<span class="_ _5"></span>d<span class="_ _b"></span>by<span class="_ _0"> </span>a<span class="_ _5"></span>n<span class="_ _0"> </span>exa<span class="_ _5"></span>ct<span class="_ _0"> </span>clos<span class="_ _5"></span>ed-<span class="_ _5"></span>form</div><div class="t m0 x5d h2 y81 ff1 fs0 fc0 sc0 ls0 ws0">att<span class="_ _5"></span>itud<span class="_ _5"></span>e<span class="_ _5"></span>u<span class="_ _5"></span>pda<span class="_ _5"></span>ting<span class="_ _b"> </span>o<span class="_ _5"></span>per<span class="_ _5"></span>atio<span class="_ _5"></span>n.</div><div class="t m0 xf he y82 ff1 fs6 fc0 sc0 ls0 ws0">3<span class="ff6">;</span>4</div><div class="t m0 x65 h2 y81 ff1 fs0 fc0 sc0 ls0 ws0">The<span class="_ _a"> </span>h<span class="_ _5"></span>igh<span class="_ _5"></span>-spe<span class="_ _5"></span>ed<span class="_ _5"></span>a<span class="_ _5"></span>lgo<span class="_ _5"></span>rithm<span class="_ _b"> </span>is<span class="_ _0"> </span>de<span class="_ _5"></span>sign<span class="_ _5"></span>ed</div><div class="t m0 x5d h2 y83 ff1 fs0 fc0 sc0 ls0 ws0">to<span class="_ _1"> </span>a<span class="_ _5"></span>ccu<span class="_ _5"></span>rate<span class="_ _5"></span>ly<span class="_ _a"> </span>ac<span class="_ _5"></span>cou<span class="_ _5"></span>nt<span class="_ _0"> </span>fo<span class="_ _5"></span>r<span class="_ _3"> </span>mult<span class="_ _5"></span>iaxi<span class="_ _5"></span>s<span class="_ _0"> </span>h<span class="_ _5"></span>igh-<span class="_ _5"></span>freq<span class="_ _5"></span>uen<span class="_ _5"></span>cy<span class="_ _b"></span>an<span class="_ _5"></span>gul<span class="_ _5"></span>ar<span class="_ _0"> </span>mot<span class="_ _5"></span>ion</div><div class="t m0 x5d h2 y84 ff1 fs0 fc0 sc0 ls0 ws0">bet<span class="_ _5"></span>ween<span class="_ _0"> </span>mode<span class="_ _5"></span>rate<span class="_ _a"> </span>s<span class="_ _5"></span>peed<span class="_ _0"> </span>alg<span class="_ _5"></span>orit<span class="_ _5"></span>hm<span class="_ _b"> </span>up<span class="_ _5"></span>dat<span class="_ _5"></span>es<span class="_ _b"> </span>th<span class="_ _5"></span>at<span class="_ _a"> </span>c<span class="_ _5"></span>an<span class="_ _a"> </span>r<span class="_ _5"></span>ecti<span class="_ _5"></span>fy<span class="_ _a"> </span>into<span class="_ _0"> </span>s<span class="_ _5"></span>ys-</div><div class="t m0 x5d h2 y85 ff1 fs0 fc0 sc0 ls0 ws0">tema<span class="_ _5"></span>tic<span class="_ _a"> </span>at<span class="_ _5"></span>titu<span class="_ _5"></span>de<span class="_ _b"> </span>ch<span class="_ _5"></span>ang<span class="_ _5"></span>e</div><div class="t m0 x66 h2 y86 ff1 fs0 fc0 sc0 ls0 ws0">(</div><div class="t m0 x67 h2 y85 ff1 fs0 fc0 sc0 ls0 ws0">trad<span class="_ _5"></span>ition<span class="_ _5"></span>ally<span class="_ _b"></span>d<span class="_ _5"></span>enot<span class="_ _5"></span>ed<span class="_ _b"></span>as<span class="_ _0"> </span>co<span class="_ _5"></span>nin<span class="_ _5"></span>g</div><div class="t m0 x68 h2 y86 ff1 fs0 fc0 sc0 ls0 ws0">)</div><div class="t m0 x69 h2 y85 ff1 fs0 fc0 sc0 ls0 ws0">.<span class="_ _0"> </span>Origi<span class="_ _5"></span>nall<span class="_ _5"></span>y</div><div class="t m0 x5d h2 y87 ff1 fs0 fc0 sc0 ls0 ws0">con<span class="_ _5"></span>ceived<span class="_ _0"> </span>as<span class="_ _3"> </span>a<span class="_ _3"> </span>si<span class="_ _5"></span>mple<span class="_ _0"> </span>&#59022;<span class="_ _3"> </span>rs<span class="_ _5"></span>t-or<span class="_ _5"></span>der<span class="_ _a"> </span>a<span class="_ _5"></span>lgor<span class="_ _5"></span>ithm,</div><div class="t m0 x6a he y88 ff1 fs6 fc0 sc0 ls0 ws0">2</div><div class="t m0 x6b h2 y87 ff1 fs0 fc0 sc0 ls0 ws0">tod<span class="_ _5"></span>ay&#8217;<span class="_ _c"></span>s<span class="_ _3"> </span>hig<span class="_ _5"></span>h-s<span class="_ _5"></span>pee<span class="_ _5"></span>d<span class="_ _b"></span>a<span class="_ _5"></span>t-</div><div class="t m0 x5d h2 y89 ff1 fs0 fc0 sc0 ls0 ws0">titu<span class="_ _5"></span>de<span class="_ _0"> </span>a<span class="_ _5"></span>lgor<span class="_ _5"></span>ithms<span class="_ _0"> </span>have<span class="_ _3"> </span>tak<span class="_ _5"></span>en<span class="_ _0"> </span>ad<span class="_ _5"></span>vanta<span class="_ _5"></span>ge<span class="_ _a"> </span>of<span class="_ _3"> </span>in<span class="_ _5"></span>crea<span class="_"> </span>se<span class="_ _5"></span>d<span class="_ _a"> </span>thr<span class="_ _5"></span>oug<span class="_ _5"></span>hpu<span class="_ _5"></span>t<span class="_ _b"> </span>ca<span class="_ _5"></span>-</div><div class="t m0 x5d h2 y8a ff1 fs0 fc0 sc0 ls0 ws0">pab<span class="_ _5"></span>ilit<span class="_ _5"></span>ies<span class="_ _1"> </span>i<span class="_ _5"></span>n<span class="_ _e"> </span>mo<span class="_ _5"></span>dern<span class="_ _5"></span>-da<span class="_ _5"></span>y<span class="_ _3"> </span>co<span class="_ _5"></span>mput<span class="_ _5"></span>ers<span class="_ _1"> </span>a<span class="_ _5"></span>nd<span class="_ _e"> </span>be<span class="_ _5"></span>come<span class="_ _e"> </span>h<span class="_ _5"></span>igh<span class="_ _5"></span>er<span class="_ _1"> </span>o<span class="_ _5"></span>rder<span class="_ _e"> </span>fo<span class="_ _5"></span>r</div><div class="t m0 x5d h2 y8b ff1 fs0 fc0 sc0 ls0 ws0">impr<span class="_ _5"></span>oved<span class="_ _1"> </span>a<span class="_ _5"></span>ccur<span class="_ _5"></span>acy</div><div class="t m0 x6c h2 y8c ff1 fs0 fc0 sc0 ls0 ws0">(</div><div class="t m0 x6d h2 y8b ff1 fs0 fc0 sc0 ls0 ws0">Refs<span class="_ _5"></span>.<span class="_ _1"> </span>1;<span class="_ _e"> </span>5</div><div class="t m0 x6e h3 y53 ff1 fs1 fc0 sc0 ls0 ws0">&#8211;</div><div class="t m0 x6f h2 y8b ff1 fs0 fc0 sc0 ls0 ws0">7;<span class="_ _e"> </span>and<span class="_ _e"> </span>8,<span class="_ _9"> </span>Ch<span class="_ _5"></span>ap.<span class="_ _9"> </span>7</div><div class="t m0 x70 h2 y8c ff1 fs0 fc0 sc0 ls0 ws0">)</div><div class="t m0 x71 h2 y8b ff1 fs0 fc0 sc0 ls0 ws0">.<span class="_ _9"> </span>W<span class="_ _5"></span>hile<span class="_ _9"> </span>t<span class="_ _5"></span>he<span class="_ _1"> </span>at<span class="_ _5"></span>ti-</div><div class="t m0 x5d h2 y8d ff1 fs0 fc0 sc0 ls0 ws0">tud<span class="_ _5"></span>e<span class="_ _3"> </span>u<span class="_ _5"></span>pda<span class="_ _5"></span>tin<span class="_ _5"></span>g<span class="_ _0"> </span>f<span class="_ _5"></span>unct<span class="_ _5"></span>ion<span class="_ _3"> </span>has<span class="_ _1"> </span>b<span class="_ _5"></span>een<span class="_ _1"> </span>evolv<span class="_ _5"></span>ing<span class="_ _3"> </span>to<span class="_ _9"> </span>its<span class="_ _9"> </span>c<span class="_ _5"></span>urre<span class="_ _5"></span>nt<span class="_ _3"> </span>form,<span class="_ _1"> </span>v<span class="_ _5"></span>ery</div><div class="t m0 x5d h2 y8e ff1 fs0 fc0 sc0 ls0 ws0">litt<span class="_ _5"></span>le<span class="_ _9"> </span>par<span class="_ _5"></span>alle<span class="_ _5"></span>l<span class="_ _3"> </span>wo<span class="_ _5"></span>rk<span class="_ _9"> </span>h<span class="_"> </span>as<span class="_ _e"> </span>b<span class="_ _5"></span>een<span class="_ _9"> </span>pu<span class="_ _5"></span>bli<span class="_ _5"></span>shed<span class="_ _3"> </span>o<span class="_ _5"></span>n<span class="_ _9"> </span>th<span class="_ _5"></span>e<span class="_ _9"> </span>deve<span class="_ _5"></span>lop<span class="_ _5"></span>ment<span class="_ _3"> </span>of<span class="_ _e"> </span>th<span class="_ _5"></span>e</div><div class="t m0 x5d h2 y8f ff1 fs0 fc0 sc0 ls0 ws0">com<span class="_ _5"></span>pani<span class="_ _5"></span>on<span class="_ _1"> </span>str<span class="_ _5"></span>apd<span class="_ _5"></span>own<span class="_ _3"> </span>INS<span class="_ _e"> </span>a<span class="_ _5"></span>lgor<span class="_ _5"></span>ithms<span class="_ _1"> </span>f<span class="_ _5"></span>or<span class="_ _9"> </span>s<span class="_ _5"></span>pec<span class="_ _5"></span>i&#59022;<span class="_ _a"> </span>c<span class="_ _e"> </span>forc<span class="_ _5"></span>e<span class="_ _9"> </span>acce<span class="_ _5"></span>lera<span class="_ _5"></span>-</div><div class="t m0 x5d h2 y90 ff1 fs0 fc0 sc0 ls0 ws0">tio<span class="_ _5"></span>n<span class="_ _b"> </span>t<span class="_ _5"></span>rans<span class="_ _5"></span>form<span class="_ _5"></span>atio<span class="_ _5"></span>n/<span class="_ _4"></span>veloc<span class="_ _5"></span>ity<span class="_ _b"></span>in<span class="_ _5"></span>tegra<span class="_ _5"></span>tion<span class="_ _b"></span>and<span class="_ _a"> </span>po<span class="_ _5"></span>siti<span class="_ _5"></span>on<span class="_ _b"></span>inte<span class="_ _5"></span>grat<span class="_ _5"></span>ion,<span class="_ _5"></span>th<span class="_ _5"></span>e</div><div class="t m0 x5d h2 y5f ff1 fs0 fc0 sc0 ls0 ws0">sub<span class="_ _5"></span>jec<span class="_ _5"></span>t<span class="_ _a"> </span>o<span class="_ _5"></span>f<span class="_ _3"> </span>th<span class="_"> </span>is<span class="_ _3"> </span>p<span class="_ _5"></span>ape<span class="_ _5"></span>r<span class="_ _2"></span>.</div><div class="t m0 x5e h2 y91 ff1 fs0 fc0 sc0 ls0 ws0">The<span class="_ _e"> </span>sp<span class="_ _5"></span>eci<span class="_ _5"></span>&#59022;<span class="_ _b"></span>c<span class="_ _e"> </span>f<span class="_ _5"></span>orc<span class="_ _5"></span>e<span class="_ _3"> </span>t<span class="_ _5"></span>rans<span class="_ _5"></span>for<span class="_ _5"></span>matio<span class="_ _5"></span>n<span class="_ _0"> </span>al<span class="_ _5"></span>gori<span class="_ _5"></span>thm<span class="_ _1"> </span>pro<span class="_ _5"></span>ces<span class="_ _5"></span>ses<span class="_ _1"> </span>th<span class="_ _5"></span>e<span class="_ _9"> </span>iner-</div><div class="t m0 x5d h2 y92 ff1 fs0 fc0 sc0 ls0 ws0">tia<span class="_ _5"></span>l<span class="_ _1"> </span>se<span class="_ _5"></span>nso<span class="_ _5"></span>r<span class="_ _3"> </span>da<span class="_ _5"></span>ta<span class="_ _3"> </span>t<span class="_ _5"></span>o<span class="_ _9"> </span>cal<span class="_ _5"></span>cula<span class="_ _5"></span>te<span class="_ _3"> </span>an<span class="_ _9"> </span>i<span class="_ _5"></span>nteg<span class="_ _5"></span>rate<span class="_ _5"></span>d<span class="_ _0"> </span>sp<span class="_ _5"></span>eci<span class="_ _5"></span>&#59022;<span class="_ _b"> </span>c<span class="_ _11"> </span>forc<span class="_ _5"></span>e<span class="_ _1"> </span>inc<span class="_ _5"></span>remen<span class="_ _5"></span>t</div><div class="t m0 x5d h2 y93 ff1 fs0 fc0 sc0 ls0 ws0">in<span class="_ _e"> </span>navi<span class="_ _5"></span>gat<span class="_ _5"></span>ion<span class="_ _3"> </span>co<span class="_ _5"></span>ordi<span class="_ _5"></span>nate<span class="_ _5"></span>s<span class="_ _3"> </span>over<span class="_ _1"> </span>th<span class="_ _5"></span>e<span class="_ _9"> </span>vel<span class="_ _5"></span>ocit<span class="_ _5"></span>y<span class="_ _3"> </span>alg<span class="_ _5"></span>ori<span class="_ _5"></span>thm<span class="_ _3"> </span>up<span class="_ _5"></span>dat<span class="_ _5"></span>e<span class="_ _3"> </span>t<span class="_ _5"></span>ime</div><div class="t m0 x5d h2 y94 ff1 fs0 fc0 sc0 ls0 ws0">int<span class="_ _5"></span>erval.<span class="_ _e"> </span>The<span class="_ _11"> </span>v<span class="_ _5"></span>eloc<span class="_ _5"></span>ity<span class="_ _9"> </span>is<span class="_ _11"> </span>up<span class="_ _5"></span>dat<span class="_ _5"></span>ed<span class="_ _9"> </span>by<span class="_ _11"> </span>ad<span class="_ _5"></span>din<span class="_ _5"></span>g<span class="_ _9"> </span>t<span class="_ _5"></span>he<span class="_ _e"> </span>nav<span class="_ _5"></span>iga<span class="_ _5"></span>tion<span class="_ _9"> </span>fra<span class="_ _5"></span>me</div><div class="t m0 x5d h2 y95 ff1 fs0 fc0 sc0 ls0 ws0">spe<span class="_ _5"></span>ci&#59022;<span class="_ _0"> </span>c<span class="_ _e"> </span>f<span class="_ _5"></span>orce<span class="_ _e"> </span>in<span class="_ _5"></span>cre<span class="_ _5"></span>ment</div><div class="t m0 x72 h2 y96 ff1 fs0 fc0 sc0 ls0 ws0">(</div><div class="t m0 x73 h2 y95 ff1 fs0 fc0 sc0 ls0 ws0">plus<span class="_ _e"> </span>an<span class="_ _11"> </span>in<span class="_ _5"></span>cre<span class="_ _5"></span>ment<span class="_ _1"> </span>f<span class="_ _5"></span>or<span class="_ _e"> </span>gr<span class="_ _5"></span>avity<span class="_ _9"> </span>an<span class="_ _5"></span>d<span class="_ _1"> </span>c<span class="_ _5"></span>oor-</div><div class="t m0 x5d h2 y97 ff1 fs0 fc0 sc0 ls0 ws0">din<span class="_ _5"></span>ate<span class="_ _3"> </span>fra<span class="_ _5"></span>me<span class="_ _3"> </span>ro<span class="_ _5"></span>tatio<span class="_ _5"></span>n<span class="_ _0"> </span>effe<span class="_ _5"></span>cts</div><div class="t m0 x74 h2 y98 ff1 fs0 fc0 sc0 ls0 ws0">)</div><div class="t m0 x65 h2 y97 ff1 fs0 fc0 sc0 ls0 ws0">to<span class="_ _3"> </span>t<span class="_ _5"></span>he<span class="_ _3"> </span>p<span class="_ _5"></span>revio<span class="_ _5"></span>us<span class="_ _0"> </span>vel<span class="_ _5"></span>ocit<span class="_ _5"></span>y<span class="_ _a"> </span>va<span class="_ _5"></span>lue.<span class="_ _3"> </span>A<span class="_ _3"> </span>k<span class="_ _5"></span>ey</div><div class="t m0 x5d h2 y99 ff1 fs0 fc0 sc0 ls0 ws0">fun<span class="_ _5"></span>ctio<span class="_ _5"></span>n<span class="_ _b"> </span>of<span class="_ _3"> </span>the<span class="_ _a"> </span>t<span class="_ _5"></span>rans<span class="_ _5"></span>for<span class="_ _5"></span>matio<span class="_ _5"></span>n<span class="_ _5"></span>alg<span class="_ _5"></span>orit<span class="_ _5"></span>hm<span class="_ _b"></span>is<span class="_ _0"> </span>t<span class="_ _5"></span>o<span class="_ _a"> </span>ac<span class="_ _5"></span>cura<span class="_ _5"></span>tely<span class="_ _b"> </span>ac<span class="_ _5"></span>cou<span class="_ _5"></span>nt<span class="_ _b"> </span>fo<span class="_ _5"></span>r</div><div class="t m0 x5d h2 y9a ff1 fs0 fc0 sc0 ls0 ws0">att<span class="_ _5"></span>itud<span class="_ _5"></span>e<span class="_ _3"> </span>rota<span class="_ _5"></span>tio<span class="_ _5"></span>n</div><div class="t m0 x75 h2 y9b ff1 fs0 fc0 sc0 ls0 ws0">(</div><div class="t m0 x76 h2 y9a ff1 fs0 fc0 sc0 ls0 ws0">he<span class="_ _5"></span>nce,<span class="_ _3"> </span>r<span class="_ _5"></span>ota<span class="_ _5"></span>tion<span class="_ _3"> </span>of<span class="_ _1"> </span>t<span class="_ _5"></span>he<span class="_ _3"> </span>s<span class="_ _5"></span>trap<span class="_ _5"></span>down<span class="_ _3"> </span>acc<span class="_ _5"></span>eler<span class="_ _5"></span>omete<span class="_ _5"></span>rs</div><div class="t m0 x77 h2 y9b ff1 fs0 fc0 sc0 ls0 ws0">)</div><div class="t m0 x5d h2 y9c ff1 fs0 fc0 sc0 ls0 ws0">du<span class="_ _5"></span>ring<span class="_ _9"> </span>th<span class="_ _5"></span>e<span class="_ _9"> </span>veloc<span class="_ _5"></span>ity<span class="_ _3"> </span>u<span class="_ _5"></span>pda<span class="_ _5"></span>te<span class="_ _1"> </span>ti<span class="_ _5"></span>me<span class="_ _9"> </span>pe<span class="_ _5"></span>riod<span class="_ _5"></span>.<span class="_ _3"> </span>In<span class="_ _e"> </span>so<span class="_ _5"></span>me<span class="_ _9"> </span>ap<span class="_ _5"></span>plic<span class="_ _5"></span>atio<span class="_ _5"></span>ns,<span class="_ _0"> </span>t<span class="_ _5"></span>his</div><div class="t m0 x5d h2 y9d ff1 fs0 fc0 sc0 ls0 ws0">has<span class="_ _11"> </span>b<span class="_ _5"></span>een<span class="_ _9"> </span>a<span class="_ _5"></span>chieve<span class="_ _5"></span>d<span class="_ _3"> </span>us<span class="_ _5"></span>ing<span class="_ _9"> </span>a<span class="_ _11"> </span>ce<span class="_ _5"></span>nter<span class="_ _5"></span>ing<span class="_ _1"> </span>alg<span class="_ _5"></span>ori<span class="_ _5"></span>thm</div><div class="t m0 x78 he y9e ff1 fs6 fc0 sc0 ls0 ws0">9</div><div class="t m0 x70 h2 y9d ff1 fs0 fc0 sc0 ls0 ws0">in<span class="_ _e"> </span>wh<span class="_ _5"></span>ich<span class="_ _e"> </span>a<span class="_ _5"></span>ttitu<span class="_ _5"></span>de</div><div class="t m0 x5d h2 y9f ff1 fs0 fc0 sc0 ls0 ws0">dat<span class="_ _5"></span>a<span class="_ _0"> </span>f<span class="_ _5"></span>or<span class="_ _0"> </span>t<span class="_ _5"></span>he<span class="_ _3"> </span>spe<span class="_ _5"></span>ci&#59022;<span class="_ _a"> </span>c<span class="_ _3"> </span>fo<span class="_ _5"></span>rce<span class="_ _3"> </span>tran<span class="_ _5"></span>sfo<span class="_"> </span>rma<span class="_ _5"></span>tion<span class="_ _a"> </span>is<span class="_ _3"> </span>u<span class="_ _5"></span>pda<span class="_ _5"></span>ted<span class="_ _a"> </span>a<span class="_ _5"></span>t<span class="_ _3"> </span>the<span class="_ _3"> </span>ce<span class="_ _5"></span>nter<span class="_ _0"> </span>of</div><div class="t m0 x5d h2 y6f ff1 fs0 fc0 sc0 ls0 ws0">the<span class="_ _e"> </span>vel<span class="_ _5"></span>ocit<span class="_ _5"></span>y<span class="_ _3"> </span>up<span class="_ _5"></span>date<span class="_ _1"> </span>ti<span class="_ _5"></span>me<span class="_ _9"> </span>int<span class="_ _5"></span>erval</div><div class="t m0 x79 h2 ya0 ff1 fs0 fc0 sc0 ls0 ws0">(</div><div class="t m0 x7a h2 y6f ff1 fs0 fc0 sc0 ls0 ws0">ther<span class="_ _5"></span>eby<span class="_ _9"> </span>intr<span class="_ _5"></span>odu<span class="_ _5"></span>cing<span class="_ _3"> </span>a<span class="_ _9"> </span>s<span class="_ _5"></span>tagg<span class="_ _5"></span>ere<span class="_ _5"></span>d</div><div class="t m0 x7b h15 ya1 ff1 fs4 fc0 sc0 ls0 ws0">20<span class="_ _5"></span>8</div></div><div class="pi" data-data='{"ctm":[1.699998,0.000000,0.000000,1.699998,0.000000,0.000000]}'></div></div></body></html>
评论