OpenCV人检测分类器

  • n5_866634
    了解作者
  • 1.4MB
    文件大小
  • rar
    文件格式
  • 0
    收藏次数
  • VIP专享
    资源类型
  • 0
    下载次数
  • 2022-05-26 04:26
    上传日期
opencv中haar+Adaboost已经训练好的分类器。有双目、身体等等,出自专家之手,必属精品,CV 1.0版本。
haarcascades.rar
  • haarcascades
  • haarcascade_mcs_eyepair_big.xml
    360.8KB
  • haarcascade_righteye_2splits.xml
    326.6KB
  • haarcascade_frontalface_default.xml
    1.2MB
  • haarcascade_frontalface_alt2.xml
    817.8KB
  • haarcascade_lefteye_2splits.xml
    325.2KB
  • haarcascade_frontalface_alt.xml
    898.3KB
  • haarcascade_profileface.xml
    1.1MB
  • haarcascade_eye.xml
    494.4KB
  • haarcascade_mcs_nose.xml
    1.6MB
  • haarcascade_mcs_lefteye.xml
    782.9KB
  • haarcascade_frontalface_alt_tree.xml
    3.5MB
  • haarcascade_mcs_eyepair_small.xml
    413KB
  • haarcascade_eye_tree_eyeglasses.xml
    1MB
  • haarcascade_mcs_righteye.xml
    1.4MB
  • haarcascade_mcs_mouth.xml
    724.6KB
内容介绍
<?xml version="1.0"?> <!-- Stump-based 20x20 gentle adaboost frontal face detector. This detector uses tree of stage classifiers instead of a cascade Created by Rainer Lienhart. //////////////////////////////////////////////////////////////////////////////////////// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. By downloading, copying, installing or using the software you agree to this license. If you do not agree to this license, do not download, install, copy or use the software. Intel License Agreement For Open Source Computer Vision Library Copyright (C) 2000, Intel Corporation, all rights reserved. Third party copyrights are property of their respective owners. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistribution's of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistribution's in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * The name of Intel Corporation may not be used to endorse or promote products derived from this software without specific prior written permission. This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the Intel Corporation or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage. --> <opencv_storage> <haarcascade_frontalface_tree_alt type_id="opencv-haar-classifier"> <size>20 20</size> <stages> <_> <!-- stage 0 --> <trees> <_> <!-- tree 0 --> <_> <!-- root node --> <feature> <rects> <_>2 7 14 4 -1.</_> <_>2 9 14 2 2.</_></rects> <tilted>0</tilted></feature> <threshold>3.7895569112151861e-003</threshold> <left_val>-0.9294580221176148</left_val> <right_val>0.6411985158920288</right_val></_></_> <_> <!-- tree 1 --> <_> <!-- root node --> <feature> <rects> <_>1 2 18 4 -1.</_> <_>7 2 6 4 3.</_></rects> <tilted>0</tilted></feature> <threshold>0.0120981102809310</threshold> <left_val>-0.7181009054183960</left_val> <right_val>0.4714100956916809</right_val></_></_> <_> <!-- tree 2 --> <_> <!-- root node --> <feature> <rects> <_>5 5 9 5 -1.</_> <_>8 5 3 5 3.</_></rects> <tilted>0</tilted></feature> <threshold>1.2138449819758534e-003</threshold> <left_val>-0.7283161282539368</left_val> <right_val>0.3033069074153900</right_val></_></_></trees> <stage_threshold>-1.3442519903182983</stage_threshold> <parent>-1</parent> <next>-1</next></_> <_> <!-- stage 1 --> <trees> <_> <!-- tree 0 --> <_> <!-- root node --> <feature> <rects> <_>3 6 14 9 -1.</_> <_>3 9 14 3 3.</_></rects> <tilted>0</tilted></feature> <threshold>8.7510552257299423e-003</threshold> <left_val>-0.8594707250595093</left_val> <right_val>0.3688138127326965</right_val></_></_> <_> <!-- tree 1 --> <_> <!-- root node --> <feature> <rects> <_>1 1 18 5 -1.</_> <_>7 1 6 5 3.</_></rects> <tilted>0</tilted></feature> <threshold>0.0219867005944252</threshold> <left_val>-0.6018015146255493</left_val> <right_val>0.3289783000946045</right_val></_></_> <_> <!-- tree 2 --> <_> <!-- root node --> <feature> <rects> <_>4 6 12 8 -1.</_> <_>4 10 12 4 2.</_></rects> <tilted>0</tilted></feature> <threshold>6.4913398819044232e-004</threshold> <left_val>-0.7943195104598999</left_val> <right_val>0.2549329996109009</right_val></_></_> <_> <!-- tree 3 --> <_> <!-- root node --> <feature> <rects> <_>9 5 6 10 -1.</_> <_>12 5 3 5 2.</_> <_>9 10 3 5 2.</_></rects> <tilted>0</tilted></feature> <threshold>-1.0192029876634479e-003</threshold> <left_val>0.2272932976484299</left_val> <right_val>-0.6362798213958740</right_val></_></_> <_> <!-- tree 4 --> <_> <!-- root node --> <feature> <rects> <_>4 0 11 9 -1.</_> <_>4 3 11 3 3.</_></rects> <tilted>0</tilted></feature> <threshold>1.3674780493602157e-003</threshold> <left_val>-0.6001418232917786</left_val> <right_val>0.2411836981773377</right_val></_></_> <_> <!-- tree 5 --> <_> <!-- root node --> <feature> <rects> <_>12 5 4 8 -1.</_> <_>12 9 4 4 2.</_></rects> <tilted>0</tilted></feature> <threshold>1.0245250305160880e-003</threshold> <left_val>-0.5854247212409973</left_val> <right_val>0.1255010962486267</right_val></_></_> <_> <!-- tree 6 --> <_> <!-- root node --> <feature> <rects> <_>4 5 10 10 -1.</_> <_>4 5 5 5 2.</_> <_>9 10 5 5 2.</_></rects> <tilted>0</tilted></feature> <threshold>0.0184658598154783</threshold> <left_val>0.1956356018781662</left_val> <right_val>-0.6763023138046265</right_val></_></_> <_> <!-- tree 7 --> <_> <!-- root node --> <feature> <rects> <_>7 5 6 7 -1.</_> <_>9 5 2 7 3.</_></rects> <tilted>0</tilted></feature> <threshold>4.0901508182287216e-003</threshold> <left_val>-0.4491649866104126</left_val> <right_val>0.2667768895626068</right_val></_></_> <_> <!-- tree 8 --> <_> <!-- root node --> <feature> <rects> <_>3 8 5 12 -1.</_> <_>3 14 5 6 2.</_></rects> <tilted>0</tilted></feature> <threshold>0.0113580999895930</threshold> <left_val>0.1878322958946228</left_val> <right_val>-0.6137936115264893</right_val></_></_></trees> <stage_threshold>-1.6378560066223145</stage_threshold> <parent>0</parent> <next>-1</next></_> <_> <!-- stage 2 --> <trees> <_> <!-- tree 0 --> <_> <!-- root node --> <feature> <rects> <_>5 3 9 9 -1.</_> <_>5 6 9 3 3
评论
    相关推荐
    • opencv 分类
      OPCV分类,可以做图片分类参考。
    • opencv人眼检测分类
      opencv 人眼检测 分类器 harropencv 人眼检测 分类器 harropencv 人眼检测 分类器 harropencv 人眼检测 分类器 harropencv 人眼检测 分类器 harropencv 人眼检测 分类器 harropencv 人眼检测 分类器 harr
    • SVM_HOG,opencv分类
      SVM_HOG,opencv分类,供开发参考。
    • OpenCV 分类器训练截图工具
      OpenCV 分类器训练截图工具,样本负样本快速生成工具分享给大家。
    • 2076个opencv分类器苹果样本及解释文件
      因为需要做opencv苹果识别 ,发现网上并没有相关资源 ,所以花了两天时间整理了2000多个分类器正样本以及其解释文件(解释文件太难弄了)
    • Opencv和图像分类
      使用Opencv进行图像分类的应用程序,对图像的区分程度不错。
    • OpenCV分类训练器
      用窗口界面形式运行OpenCV分类器,参数只需设置即可, 此文件为源码
    • 基于opencv分类器训练完整模式
      介绍haar分类器训练模式,包括训练分类器要用的exe文件,以及具体训练步骤,适合初学者,15分钟学会训练。另外含有已训练的分类器样板。
    • opencv 分类器训练工具集
      opencv 分类器训练工具集,收集好正负样本集通过本数据集即可完成分类器训练,特定场景的分类器,提高可用性;
    • GaussDB_100_1.0.1-DATABASE-REDHAT-64bit.tar.gz
      guassdb100在redhat上安装包,单机部署的包,安装步骤请看我的文中介绍,经过大量实验搭建总结出来的文档