AwesomeStatistics:用JavaScript编写的出色统计功能,可满足您的所有统计功能需求

  • z3_261134
    了解作者
  • 50.1KB
    文件大小
  • zip
    文件格式
  • 0
    收藏次数
  • VIP专享
    资源类型
  • 0
    下载次数
  • 2022-05-28 05:26
    上传日期
很棒的统计 一个很棒的统计功能的小型图书馆。 安装 您可以使用npm或yarn安装Awesome Statistics。 npm install awesome-statistics --save 或者 yarn add awesome-statistics 用 import awesomeStatistics from 'awesome-statistics' const points = [ [ 5 , 8 ] , [ 9 , 9 ] , [ 3 , 7 ] , [ 1 , 6 ] , [ 5 , 1 ] ] const correlation = awesomeStatistics . correlation ( points ) // 0.28141 职能 平均数() 表示一组数据中的中心值的数字,该数据是通过将一组数据中的值之和除以它们的数量而得出的
AwesomeStatistics-master.zip
  • AwesomeStatistics-master
  • .gitignore
    914B
  • README.md
    3.2KB
  • rollup.config.js
    392B
  • test
  • average.test.js
    319B
  • sum.test.js
    498B
  • variance.test.js
    407B
  • correlation.test.js
    461B
  • standard-deviation.test.js
    482B
  • median.test.js
    453B
  • mode.test.js
    516B
  • range.test.js
    350B
  • LICENSE
    1.2KB
  • package.json
    1.2KB
  • src
  • range.js
    368B
  • median.js
    469B
  • sum.js
    321B
  • variance.js
    385B
  • average.js
    324B
  • standard-deviation.js
    364B
  • correlation.js
    728B
  • awesomestatistics.js
    379B
  • mode.js
    500B
  • .babelrc
    126B
  • awesomestatistics.js
    6.7KB
  • .travis.yml
    91B
  • yarn.lock
    139.5KB
  • .eslintrc.json
    29B
内容介绍
# Awesome Statistics A small library of awesome statistical functions. [![build status](https://img.shields.io/travis/hellojosh/AwesomeStatistics.svg)](https://travis-ci.org/hellojosh/AwesomeStatistics) [![npm version](https://img.shields.io/npm/v/awesome-statistics.svg)](https://www.npmjs.com/package/awesome-statistics) ## Install You can install Awesome Statistics using `npm` or `yarn`. ``` npm install awesome-statistics --save ``` or ``` yarn add awesome-statistics ``` ## Use ```javascript import awesomeStatistics from 'awesome-statistics' const points = [ [ 5, 8 ], [ 9, 9 ], [ 3, 7 ], [ 1, 6 ], [ 5, 1 ] ] const correlation = awesomeStatistics.correlation(points) // 0.28141 ``` ## Functions #### average() A number expressing the central value in a set of data which is calculated by dividing the sum of the values in the set by their number. ```javascript import awesomeStatistics from 'awesome-statistics' const numbers = [ 1, 2, 3, 4, 5, 6 ] const avg = awesomeStatistics.average(numbers) console.log(avg) ``` #### correlation() A quantity measuring the extent of interdependence of variable quantities. ```javascript import awesomeStatistics from 'awesome-statistics' const points = [ [ 5, 8 ], [ 9, 9 ], [ 3, 7 ], [ 1, 6 ], [ 5, 1 ] ] const correlation = awesomeStatistics.correlation(points) console.log(correlation) ``` #### median() The middle number in a sorted list of numbers. ```javascript import awesomeStatistics from 'awesome-statistics' const numbers = [ 2, 5, 6, 9, 8, 6, 7, 2, 3 ] const median = awesomeStatistics.median(numbers) console.log(median) ``` #### mode() The value that occurs most frequently in a given set of data. ```javascript import awesomeStatistics from 'awesome-statistics' const numbers = [ 1, 5, 4, 3, 1, 1, 7, 5, 9 ] const mode = awesomeStatistics.mode(numbers) console.log(mode) ``` #### range() The difference between the lowest and highest values. ```javascript import awesomeStatistics from 'awesome-statistics' const numbers = [ 45, 65, 123, 23, 54 ] const range = awesomeStatistics.range(numbers) console.log(range) ``` #### standardDeviation() A quantity calculated to indicate the extent of deviation for a group as a whole. ```javascript import awesomeStatistics from 'awesome-statistics' const numbers = [ 12, 45, 1, 3, 4, 9, 23, 8 ] const standardDeviation = awesomeStatistics.standardDeviation(numbers) console.log(standardDeviation) ``` #### sum() Adds all of the numbers together. ```javascript import awesomeStatistics from 'awesome-statistics' const numbers = [ 1, 2, 3 ] const sum = awesomeStatistics.sum(numbers) const sumAgain = awesomeStatistics.sum(numbers, v => v * v) const sumOnceMore = awesomeStatistics.sum(numbers, v => v + 1, 10) console.log(sum) console.log(sumAgain) console.log(sumOnceMore) ``` #### variance() The variance is a measure of how spread out numbers are. ```javascript import awesomeStatistics from 'awesome-statistics' const numbers = [ 5, 12, 4, 2, 8, 4, 9, 29 ] const variance = awesomeStatistics.variance(numbers) console.log(variance) ``` ## Test ``` yarn run test ``` ## More Functions Leave an issue if there are more functions you would like added. Thanks.
评论
    相关推荐