matlab集成c代码-BiasCorrectionPrecipitation:卫星降水观测的偏差校正

  • K9_606513
    了解作者
  • 872.9KB
    文件大小
  • zip
    文件格式
  • 0
    收藏次数
  • VIP专享
    资源类型
  • 0
    下载次数
  • 2022-05-30 10:49
    上传日期
Matlab集成的c代码 卫星降水的偏差校正 该资料库中的脚本用于使用偏向校正卫星观测到的降水。 这些方法源自于MATLAB语言编写的算法,该算法由Juan University of Juan Valdes教授领导的亚利桑那大学SWAAT研究小组开发(Roy等人,2016年)。 该代码提供了两种不同的偏差校正技术: 线性缩放,b。 分位数映射 该过程分为几个脚本,如下所示: config.r :包含基本配置信息(例如,文件位置的基本路径,时间范围)。 该文件本身不能执行,所有其他脚本都调用该文件来收集此参数。 adjusted_CHIRPS.r :此步骤是可选的,在要进行偏差校正的时间段内,如果对感兴趣的区域有可靠的地面观测可用,请使用此步骤。 允许使用观测值(雨量计观测值)校正CHIRPS数据。 输出是经过地面校正的CHIRPS数据,可将其替代基本CHIRPS用于线性和分位数偏差校正方法。 linear_method.r :此脚本计算CHIRPS和要校正的卫星降水产品(SPP)的所有年份的月平均值。 然后,将这些平均值用于计算SPP与CHIRPS的偏差,并应用于每个每日SPP文件。
BiasCorrectionPrecipitation-master.zip
  • BiasCorrectionPrecipitation-master
  • .gitignore
    581B
  • config.R
    3.4KB
  • adjusted_CHIRPS.R
    6.5KB
  • quantile_method.R
    7KB
  • LICENSE
    1KB
  • biascorrection.zip
    982.9KB
  • README.md
    4.5KB
  • SERVIRGlobal.png
    19.5KB
  • linear_method.R
    3.3KB
内容介绍
![.](SERVIRGlobal.png) # Bias Correction of Satellite Precipitation The scripts in this repository are used to bias-correct satellite-observed precipitation using [CHIRPS](http://chg.geog.ucsb.edu/data/chirps/). These methods are derived from algorithms written in MATLAB, developed by the SWAAT research group at the University of Arizona, lead by Professor Juan Valdes (Roy et al. 2016). The code offers two different techniques for bias correction: a. Linear Scaling, b. Quantile Mapping The process is divided into several scripts, as follows: - `config.r`: Contains basic configuration information (e.g., base path to file locations, time extent). This file is not executable on itself, it is called from all the other scripts to gather this parameters. - `adjusted_CHIRPS.r`: This step is optional, use it when reliable ground observations are available for the area of interest, during the time period to be bias corrected. Allows to correct CHIRPS data using observed values (rain gauge observations). The output is ground-corrected CHIRPS data, which can be used in place of base CHIRPS for both the Linear and the Quantile bias-correction methods. - `linear_method.r`: This script calculates monthly averages across all years for both CHIRPS and the Satellite Precipitation Product (SPP) to correct. These averages are then used to calculate the bias of the SPP compared to CHIRPS and applied to each daily SPP file. - `quantile_method.r`: This script uses a probability density function (PDF) to calculate the two parameter of the distribution: gamma (λ), and theta (θ). The process ignores values lower than 1 mm (drizzle), and creates a cumulative density function (CDF) for each matrix. Next, it map CHIRPS PDF to the SPP being bias-corrected. The process is applied only when there are more than 5 non-zero unique values in each month (for a given grid cell). The scripts were translated into Open Source code (in R) by Begum Rabeya Rushi, Faith Mitheu and Stella Masese. For more information on the **SERVIR** Program, click [here](https://servirglobal.net) # Sample Data The file `biascorrection.zip` contains sample data for a small basin in Kenya. After unpacking the file, make sure you edit the `config.r` file to reflect the location of the data appropriately before running the scripts. # Requirements - Important: Edit the `config.r` file to match the locations of the files to process before running any of the scripts. In order to find the `./config.r file`, you may need to set your working directory to the location of the scripts, prior to running any of them. The data directories do not need to reside under this location. - An R interpreter. Please install R from the [CRAN website](https://cran.r-project.org/). As an alternative, you can use [Microsoft Open R](https://mran.microsoft.com/open). R 3.3.1 or later is needed. - A text editor to make changes to the configuration file. An IDE supporting R is preferred, such as [RStudio](https://www.rstudio.com/). - R packages: Raster, sp, rgdal, abind, MASS, Pscl, EDISON, MCMCpack, invgamma. - CHIRPS data should be organized in subfolders per year. Each subfolder must be named "YYYY", using the four digit year value. Individual files should be named `YYYY.mm.dd.tif`. For example: `base_path_to_CHIRPS data/2015/2015.01.01.tif` - Observed (Rain gauge) data, if available: A CSV file with the Station IDs and their location is required. The observation data should be presented in CSV format, with a header row for columns Date, Lat, Lon and PRCP (precipitation). Date should be written in YYYYmmdd format, Lat and Lon in decimal degrees and PRCP in mm. The files should be organized by folders named after the station identifier and the observations should be broken into a file per year. For example: `path_to_observed_data/StationID1/YYYY_daily.csv`. - Input SPP files should be organized in a similar manner as the CHIRPS files. For example: `base_path_to_SPP_data/2015/2015.01.01.tif` # SERVIR Credits > Rushi, B.R., Science Coordination Office Regional Science Associate for Hindu-Kush Himalaya, UAH > Mithue, F., Thematic Lead, Water Resources & Disasters, RCMRD > Francisco Delgado, Science Coordination Office Geospatial IT Lead, USRA # References If you would like to use this resource, here is the reference: > Rushi, B.R., Adams, E.C., Roy, T. Valdes, R.M., Valdes,J.B., Ellenburg,W.L., Anderson, E., Markert, K.N., Florescordova, A., Limaye, A. (In Preparation). Bias Correction of Satellite Precipitation using Open Source Integrated Development Environment . The Earth Observer.
评论
    相关推荐
    • 电力系统状态估计MATLAB算法
      状态估计算法 MATLAB 内附readme 详细说明了使用方法和步骤 有专门的txt文件 可以输入自己的bus阵 line阵等 即可进行状态估计
    • 粒子滤波matlab算法
      粒子滤波正在得到重视,越来越的人开始注意,在故障诊断和预测领域里,用来估计状态参数。附件中matlab程序介绍了基本粒子滤波算法
    • matlab算法大全
      本文档涵盖了很多数学算法,利用matlab实现,在工程技术上有很高的应用价值
    • Matlab算法大全
      Matlab算法 PDF 分章阅读 高清PDF 很好很全面的阅读材料
    • 各种MATLAB算法
      各种MATLAB算法,代码,可供初学者参考应用,
    • Matlab算法大全
      Matlab算法大全 第01章线性规划 第02章整数规划 第03章非线性规划 第04章动态规划 第05章图与网络 第06章排队论 第07章对策论 第08章层次分析法 第09章插值与拟合 第10章数据的统计描述和分析 第11章方差分析 第12章...
    • Matlab 算法
      MATLAB语言常用算法程序集 Matlab 语言 算法 程序
    • matlab算法大全
      matlab算法大全,很全,提供插值,数值微分、积分等功能代码的实现
    • matlab算法大全
      matlab 中常用的程序 函数使用示例
    • matlab 算法程序
      matlab 算法程序,包括了插值、函数逼近、数值积分、非线性方程求解、统计分析、偏微分方程数值解法等17个部分,每个部分针对各种函数有m文件代码和相关解释说明。