//--------------------------------------【程序说明】-------------------------------------------
// 程序说明:《OpenCV3编程入门》OpenCV2版书本配套示例程序12
// 程序描述:来自OpenCV安装目录下Samples文件夹中的官方示例程序-支持向量机SVM引导
// 测试所用操作系统: Windows 7 64bit
// 测试所用IDE版本:Visual Studio 2010
// 测试所用OpenCV版本: 2.4.9
// 2014年11月 Revised by @浅墨_毛星云
//------------------------------------------------------------------------------------------------
//---------------------------------【头文件、命名空间包含部分】----------------------------
// 描述:包含程序所使用的头文件和命名空间
//-------------------------------------------------------------------------------------------------
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/ml/ml.hpp>
using namespace cv;
//--------------------------------【help( )函数】----------------------------------------------
// 描述:输出帮助信息
//-------------------------------------------------------------------------------------------------
//-----------------------------------【ShowHelpText( )函数】----------------------------------
// 描述:输出一些帮助信息
//----------------------------------------------------------------------------------------------
void ShowHelpText()
{
//输出欢迎信息和OpenCV版本
printf("\n\n\t\t\t非常感谢购买《OpenCV3编程入门》一书!\n");
printf("\n\n\t\t\t此为本书OpenCV2版的第12个配套示例程序\n");
printf("\n\n\t\t\t 当前使用的OpenCV版本为:" CV_VERSION );
printf("\n\n ----------------------------------------------------------------------------\n");
}
//-----------------------------------【main( )函数】--------------------------------------------
// 描述:控制台应用程序的入口函数,我们的程序从这里开始
//-------------------------------------------------------------------------------------------------
int main()
{
// 视觉表达数据的设置(Data for visual representation)
int width = 512, height = 512;
Mat image = Mat::zeros(height, width, CV_8UC3);
//建立训练数据( Set up training data)
float labels[4] = {1.0, -1.0, -1.0, -1.0};
Mat labelsMat(3, 1, CV_32FC1, labels);
float trainingData[4][2] = { {501, 10}, {255, 10}, {501, 255}, {10, 501} };
Mat trainingDataMat(3, 2, CV_32FC1, trainingData);
ShowHelpText();
//设置支持向量机的参数(Set up SVM's parameters)
CvSVMParams params;
params.svm_type = CvSVM::C_SVC;
params.kernel_type = CvSVM::LINEAR;
params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 100, 1e-6);
// 训练支持向量机(Train the SVM)
CvSVM SVM;
SVM.train(trainingDataMat, labelsMat, Mat(), Mat(), params);
Vec3b green(0,255,0), blue (255,0,0);
//显示由SVM给出的决定区域 (Show the decision regions given by the SVM)
for (int i = 0; i < image.rows; ++i)
for (int j = 0; j < image.cols; ++j)
{
Mat sampleMat = (Mat_<float>(1,2) << i,j);
float response = SVM.predict(sampleMat);
if (response == 1)
image.at<Vec3b>(j, i) = green;
else if (response == -1)
image.at<Vec3b>(j, i) = blue;
}
//显示训练数据 (Show the training data)
int thickness = -1;
int lineType = 8;
circle( image, Point(501, 10), 5, Scalar( 0, 0, 0), thickness, lineType);
circle( image, Point(255, 10), 5, Scalar(255, 255, 255), thickness, lineType);
circle( image, Point(501, 255), 5, Scalar(255, 255, 255), thickness, lineType);
circle( image, Point( 10, 501), 5, Scalar(255, 255, 255), thickness, lineType);
//显示支持向量 (Show support vectors)
thickness = 2;
lineType = 8;
int c = SVM.get_support_vector_count();
for (int i = 0; i < c; ++i)
{
const float* v = SVM.get_support_vector(i);
circle( image, Point( (int) v[0], (int) v[1]), 6, Scalar(128, 128, 128), thickness, lineType);
}
imwrite("result.png", image); // 保存图像
imshow("SVM Simple Example", image); // 显示图像
waitKey(0);
}