粒子群算法训练支持向量机

  • h9_803658
    了解作者
  • 15.1KB
    文件大小
  • rar
    文件格式
  • 0
    收藏次数
  • VIP专享
    资源类型
  • 0
    下载次数
  • 2022-06-07 05:23
    上传日期
本程序用量子行为的粒子群算法训练支持向量机,并用IRIS数据验证了该方法的有效性.
IRIS数据验证了该方法的有效性.rar
  • 本程序用量子行为的粒子群算法训练支持向量机,并用IRIS数据验证了该方法的有效性
  • 新建文件夹
  • qpso.asv
    2KB
  • main.asv
    4.9KB
  • Iris.m
    2.5KB
  • K.m
    11.7KB
  • Iris.mat
    4.9KB
  • qpso.m
    2.5KB
  • main.m
    4.9KB
  • pso.m
    2.9KB
  • pso.asv
    2.9KB
  • www.pudn.com.txt
    218B
内容介绍
function s = K(x1,x2); s=0; [row,col]=size(x1); %for i=1:col; % s=s+x1(i)*x2(i); %end; %y=s*s; %poly Radial Basis sigma=1; %degree=2; %s=(dot(x1,x2)+1).^degree; for i=1:col; s=s+(x1(i)-x2(i)).^2; end y=exp(-s./(2.*sigma.^2)); %如果是7.0以上版本 matlab源代码 >>edit svmtrain >>edit svmclassify >>edit svmpredict function [svm_struct, svIndex] = svmtrain(training, groupnames, varargin) %SVMTRAIN trains a support vector machine classifier % % SVMStruct = SVMTRAIN(TRAINING,GROUP) trains a support vector machine % classifier using data TRAINING taken from two groups given by GROUP. % SVMStruct contains information about the trained classifier that is % used by SVMCLASSIFY for classification. GROUP is a column vector of % values of the same length as TRAINING that defines two groups. Each % element of GROUP specifies the group the corresponding row of TRAINING % belongs to. GROUP can be a numeric vector, a string array, or a cell % array of strings. SVMTRAIN treats NaNs or empty strings in GROUP as % missing values and ignores the corresponding rows of TRAINING. % % SVMTRAIN(...,'KERNEL_FUNCTION',KFUN) allows you to specify the kernel % function KFUN used to map the training data into kernel space. The % default kernel function is the dot product. KFUN can be one of the % following strings or a function handle: % % 'linear' Linear kernel or dot product % 'quadratic' Quadratic kernel % 'polynomial' Polynomial kernel (default order 3) % 'rbf' Gaussian Radial Basis Function kernel % 'mlp' Multilayer Perceptron kernel (default scale 1) % function A kernel function specified using @, % for example @KFUN, or an anonymous function % % A kernel function must be of the form % % function K = KFUN(U, V) % % The returned value, K, is a matrix of size M-by-N, where U and V have M % and N rows respectively. If KFUN is parameterized, you can use % anonymous functions to capture the problem-dependent parameters. For % example, suppose that your kernel function is % % function k = kfun(u,v,p1,p2) % k = tanh(p1*(u*v')+p2); % % You can set values for p1 and p2 and then use an anonymous function: % @(u,v) kfun(u,v,p1,p2). % % SVMTRAIN(...,'POLYORDER',ORDER) allows you to specify the order of a % polynomial kernel. The default order is 3. % % SVMTRAIN(...,'MLP_PARAMS',[P1 P2]) allows you to specify the % parameters of the Multilayer Perceptron (mlp) kernel. The mlp kernel % requires two parameters, P1 and P2, where K = tanh(P1*U*V' + P2) and P1 % > 0 and P2 < 0. Default values are P1 = 1 and P2 = -1. % % SVMTRAIN(...,'METHOD',METHOD) allows you to specify the method used % to find the separating hyperplane. Options are % % 'QP' Use quadratic programming (requires the Optimization Toolbox) % 'LS' Use least-squares method % % If you have the Optimization Toolbox, then the QP method is the default % method. If not, the only available method is LS. % % SVMTRAIN(...,'QUADPROG_OPTS',OPTIONS) allows you to pass an OPTIONS % structure created using OPTIMSET to the QUADPROG function when using % the 'QP' method. See help optimset for more details. % % SVMTRAIN(...,'SHOWPLOT',true), when used with two-dimensional data, % creates a plot of the grouped data and plots the separating line for % the classifier. % % Example: % % Load the data and select features for classification % load fisheriris % data = [meas(:,1), meas(:,2)]; % % Extract the Setosa class % groups = ismember(species,'setosa'); % % Randomly select training and test sets % [train, test] = crossvalind('holdOut',groups); % cp = classperf(groups); % % Use a linear support vector machine classifier % svmStruct = svmtrain(data(train,:),groups(train),'showplot',true); % classes = svmclassify(svmStruct,data(test,:),'showplot',true); % % See how well the classifier performed % classperf(cp,classes,test); % cp.CorrectRate % % See also CLASSIFY, KNNCLASSIFY, QUADPROG, SVMCLASSIFY. % Copyright 2004 The MathWorks, Inc. % $Revision: 1.1.12.1 $ $Date: 2004/12/24 20:43:35 $ % References: % [1] Kecman, V, Learning and Soft Computing, % MIT Press, Cambridge, MA. 2001. % [2] Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., % Vandewalle, J., Least Squares Support Vector Machines, % World Scientific, Singapore, 2002. % [3] Scholkopf, B., Smola, A.J., Learning with Kernels, % MIT Press, Cambridge, MA. 2002. % % SVMTRAIN(...,'KFUNARGS',ARGS) allows you to pass additional % arguments to kernel functions. % set defaults plotflag = false; qp_opts = []; kfunargs = {}; setPoly = false; usePoly = false; setMLP = false; useMLP = false; if ~isempty(which('quadprog')) useQuadprog = true; else useQuadprog = false; end % set default kernel function kfun = @linear_kernel; % check inputs if nargin < 2 error(nargchk(2,Inf,nargin)) end numoptargs = nargin -2; optargs = varargin; % grp2idx sorts a numeric grouping var ascending, and a string grouping % var by order of first occurrence [g,groupString] = grp2idx(groupnames); % check group is a vector -- though char input is special... if ~isvector(groupnames) && ~ischar(groupnames) error('Bioinfo:svmtrain:GroupNotVector',... 'Group must be a vector.'); end % make sure that the data is correctly oriented. if size(groupnames,1) == 1 groupnames = groupnames'; end % make sure data is the right size n = length(groupnames); if size(training,1) ~= n if size(training,2) == n training = training'; else error('Bioinfo:svmtrain:DataGroupSizeMismatch',... 'GROUP and TRAINING must have the same number of rows.') end end % NaNs are treated as unknown classes and are removed from the training % data nans = find(isnan(g)); if length(nans) > 0 training(nans,:) = []; g(nans) = []; end ngroups = length(groupString); if ngroups > 2 error('Bioinfo:svmtrain:TooManyGroups',... 'SVMTRAIN only supports classification into two groups.\nGROUP contains %d different groups.',ngroups) end % convert to 1, -1. g = 1 - (2* (g-1)); % handle optional arguments if numoptargs >= 1 if rem(numoptargs,2)== 1 error('Bioinfo:svmtrain:IncorrectNumberOfArguments',... 'Incorrect number of arguments to %s.',mfilename); end okargs = {'kernel_function','method','showplot','kfunargs','quadprog_opts','polyorder','mlp_params'}; for j=1:2:numoptargs pname = optargs{j}; pval = optargs{j+1}; k = strmatch(lower(pname), okargs);%#ok if isempty(k) error('Bioinfo:svmtrain:UnknownParameterName',... 'Unknown parameter name: %s.',pname); elseif length(k)>1 error('Bioinfo:svmtrain:AmbiguousParameterName',... 'Ambiguous parameter name: %s.',pname); else switch(k) case 1 % kernel_function if ischar(pval) okfuns = {'linear','quadratic',... 'radial','rbf','polynomial','mlp'}; funNum = strmatch(lower(pval), okfuns);%#ok if isempty(funNum) funNum = 0; end switch funNum %maybe make this less strict in the future case 1 kfun = @linear_kernel; case 2 kfun = @quadratic_kernel; case {3,4} kfun = @rbf_kernel; case 5 kfun = @poly_kernel; usePoly = true; case 6 kfun = @mlp_kernel; useMLP = true; otherwise error('Bioinfo:svmtrain:UnknownKernelFunction',... 'Unknown Kernel Function %s.',kfun); end elseif isa (pval, 'function_handle') kfun = pval; else error('Bioinfo:svmtrain:BadKernelFunction',... 'The kernel function input does not appear to be a function handle\nor valid function name.') end case 2 % method if strncmpi(pval,'qp',2) useQuadprog = true; if isempty(which('quadprog')) warning('Bioinfo:svmtrain:NoOptim',... 'The Optimization Toolbox is required to use the quadratic programming method.') useQuadprog = false; end elseif strncmpi(pval,'ls',2) useQuadprog = false; else error('Bioinfo
评论
    相关推荐