student-recommender-system

  • n0_576111
    了解作者
  • 1.8MB
    文件大小
  • zip
    文件格式
  • 0
    收藏次数
  • VIP专享
    资源类型
  • 0
    下载次数
  • 2022-06-12 05:48
    上传日期
学生推荐系统 :blue_book: 介绍 随着在线课程变得比以往任何时候都更加重要,老师将会或很难评估和理解他们的学生,从而将精力集中在那些需要更多关注和指导的学生身上。 该项目试图探索自动评估先前考试成绩的方法,并预测学生是否会放弃课程或是否需要特别关注。 客观的 随着项目的全面启动和运行,目标如下: 提供每个学生的表现和培训模块以分析数据。 获得有关学生在即将到来的考试中的表现的预测。 可以预测学生是否会放弃该课程(如果他们不及格/表现不佳),还可以帮助教师专注于弱势学生并以视觉方式呈现。 拟议工作 该项目的“预测和推荐”部分是唯一有待完全实施的模块。 当前,正在探索许多用于构建初始模型的方法,并且根据其准确性和模块的需求,将实现最佳模型。 需要开发UI(基于Web的或独立的),以将所有功能集成在一处。 适用范围及未来范围 使用建议的工作,我们可以在课堂上使用该系统来自动化特定的任务,例如制定
student-recommender-system-master.zip
  • student-recommender-system-master
  • app.py
    9.2KB
  • images
  • process.png
    72.7KB
  • output1.png
    74.2KB
  • output3.png
    68.9KB
  • output5.png
    73.9KB
  • output2.png
    49.7KB
  • Procfile
    41B
  • courses.csv
    526B
  • studentInfo.csv
    3.3MB
  • requirements.txt
    70B
  • vle.csv
    254KB
  • assessments.csv
    8KB
  • studentRegistration.csv
    1.1MB
  • README.md
    2KB
  • studentAssessment.csv
    5.4MB
  • .vscode
  • settings.json
    38B
内容介绍
# Student-recommender-system :blue_book: # Introduction With online classes now becoming more prominent than ever teachers will or have a hard time evaluating and understanding their students thereby focus on those students who more need attention and direction. This project tries to explore ways to automate the process of assessing previous exam performance and predict if a student will drop the course or needs special attention or not. # Objective With the project fully up and running the aim is as follows: * Feed-in every student’s performance and train module to analyze the data. * Get predictions on how the students will perform in upcoming tests. * Can predict if students will drop the course(if they fail/low performance) also help faculty to focus on weak students and present it visually. # Proposed work * The Predictive and Recommendation part of the project is the only module that remains to be fully implemented. * Currently the many methods to build initial models are being explored and based on their accuracies and the needs of the module, the best model will be implemented. * UI (web-based or standalone) needs to be developed that will integrate all functionalities in one place. # Application and future scope * Using proposed work , we can use the system in classes to automate particular tasks such as making performance index of students, pass/fail prediction etc. * The teachers just need to feed student data in the specified format and then the module automatically clean, and visualize existing data to provide insights the particular class’ performance. * The module will then be able to build a test module and then give out the required recommendations on required parameters. # Process and Methodology ![](images/process.png) # Results * Relationship between performance of the students to their gender. ![](images/output1.png) * Age vs Result ![](images/output2.png) * Higher education vs Perfromance ![](images/output3.png) * IMD band vs performance ![](images/output5.png)
评论