classification-cifar10-pytorch:通过PyTorch在cifar10数据集中训练几个经典分类网络
- X2_898346了解作者
- 105.1KB文件大小
- zip文件格式
- 0收藏次数
- VIP专享资源类型
- 0下载次数
- 2022-06-13 23:32上传日期
分类-cifar10-pytorch
我正在PyTorch的cifar10数据集上测试几种经典分类网络的性能!
要求
火炬
火炬摘要
python3.x
结果
模型
我的帐户
总参数
估计总大小(MB)
可训练的参数
参数大小(MB)
保存的模型大小(MB)
GPU内存使用率(MB)
92.64%
2,296,922
36.14
2,296,922
8.76
8.96
3107
94.27%
14,728,266
62.77
14,728,266
56.18
59.0
1229
94.70%
11,171,146
53.38
11,171,146
42.61
44.7
1665年
95.09%
9,128,778
99.84
9,128,778
34.82
36.7
5779
95.22%
23,520,842
155.

classification-cifar10-pytorch-master.zip
- classification-cifar10-pytorch-master
- models
- resnet.py4.2KB
- densenet.py3.6KB
- lenet.py1.1KB
- pnasnet.py4.2KB
- dpn.py3.7KB
- googlenet.py3.1KB
- resnext.py3.6KB
- senet.py3.9KB
- __pycache__
- efficientnet.cpython-36.pyc3.2KB
- pnasnet.cpython-36.pyc4.5KB
- mobilenet.cpython-36.pyc2.6KB
- mobilenetv2.cpython-36.pyc3.2KB
- resnext.cpython-36.pyc3.7KB
- resnet.cpython-36.pyc4.6KB
- senet.cpython-36.pyc3.8KB
- shufflenet.cpython-36.pyc3.9KB
- dpn.cpython-36.pyc3.8KB
- preact_resnet.cpython-36.pyc4.7KB
- densenet.cpython-36.pyc4.3KB
- vgg.cpython-36.pyc1.8KB
- lenet.cpython-36.pyc1.3KB
- shufflenetv2.cpython-36.pyc5.3KB
- __init__.cpython-36.pyc453B
- googlenet.cpython-36.pyc2.8KB
- __init__.py360B
- mobilenetv2.py3.2KB
- shufflenetv2.py5.4KB
- vgg.py1.6KB
- preact_resnet.py4.3KB
- efficientnet.py3.2KB
- mytest.py4.3KB
- mobilenet.py2.1KB
- shufflenet.py3.5KB
- main.py4.9KB
- gt_label.png19.2KB
- utils.py3.4KB
- main_ddp.py5.9KB
- LICENSE1KB
- vis-notebook.ipynb40.5KB
- README.md2.5KB
内容介绍
# Classification-cifar10-pytorch
I am testing several classical classification networks performance on cifar10 dataset by PyTorch! [Chinese blog](https://blog.csdn.net/laizi_laizi/article/details/103006497)
# Requirements
- pytorch
- torchsummary
- python3.x
# Results
| Model | My Acc. | Total params | Estimated Total Size (MB) | Trainable params | Params size (MB) |Saved model size (MB)|GPU memory usage(MB)
| ----------------- | ----------- | ------ | ---|--- | --- | --- |--- |
| [MobileNetV2](https://arxiv.org/abs/1801.04381) | 92.64% | 2,296,922 | 36.14 | 2,296,922 | 8.76 | 8.96 | 3107 |
| [VGG16](https://arxiv.org/abs/1409.1556) | 94.27% | 14,728,266 | 62.77 |14,728,266 |56.18 |59.0 | 1229 |
| [PreActResNet18](https://arxiv.org/abs/1603.05027) | 94.70% | 11,171,146 | 53.38 | 11,171,146 | 42.61 | 44.7 | 1665 |
| [ResNeXt29(2x64d)](https://arxiv.org/abs/1611.05431) | 95.09% | 9,128,778 | 99.84 | 9,128,778 | 34.82 | 36.7 | 5779 |
| [ResNet50](https://arxiv.org/abs/1512.03385) | 95.22% | 23,520,842 | 155.86 | 23,520,842 | 89.72 | 94.4 | 5723 |
| [DPN92](https://arxiv.org/abs/1707.01629) | 95.42% | 34,236,634 | 243.50 | 34,236,634 | 130.60 | 137.5 | 10535 |
| [ResNeXt29(32x4d)](https://arxiv.org/abs/1611.05431) | 95.49% | 4,774,218 | 83.22 | 4,774,218 | 18.21 | 19.2 | 5817 |
| [DenseNet121](https://arxiv.org/abs/1608.06993) | 95.55% | 6,956,298 | 105.05 | 6,956,298 | 26.54 | 28.3 | 8203 |
| [ResNet18](https://arxiv.org/abs/1512.03385) | 95.59% | 11,173,962 | 53.89 | 11,173,962 | 42.63 | 44.8 | 1615 |
| [ResNet101](https://arxiv.org/abs/1512.03385) | 95.62% | 42,512,970 | 262.31 | 42,512,970 | 162.17 | 170.6 | 8857 |
**Note**:
1. Above GPU memory usage(MB) was observed with batch size=128.
2. For PreActResNet18, I set initial learning rate=0.1, but it can't converge, so I set it's initial lr=0.01.
3. I firstly train **VGG16**, **ResNet18** and **ResNet50** with total epochs=400. But I want to get results earlier, so for remaining networks, I set total epochs=300 (besides, afterwards it just improve a little).
4. Run the scripts: `python main.py --resume --lr 0.1 --trainbs 128 --testbs 100`
# Pre-trained models
You can obtain pre-traind models(as above list) from here:
[[Baidu Drive](https://pan.baidu.com/s/1oUfaxFnghIdClCFMf3A11Q)] [[Google Drive](https://drive.google.com/open?id=1PLwxkczvKq86ATRD7SB-5w31omuORUNV)]
评论



相关推荐
- 垃圾分类数据集.zip垃圾分类数据集。。。。。。。。。。。。。。
- 情感分类数据集.rar数据集中是对用户评价的一些正面和负面的评价语句。正面有10679条语句,负面有10428条语句。可用于训练评价分析模型。
- 英文情绪分类数据集文件经典的英文情绪分类/情感分析数据集
- 头条新闻文本分类数据集头条新闻文本分类数据集,包括11个类别,近50万条数据,文本内容为新闻标题+提取的关键词,分为训练数据和验证数据两个文件
- 叶子分类数据集-数据集暂无描述
- 叶子分类数据集.rarkaggle叶子分类数据集,
- 中文垃圾邮件分类数据集具有中文垃圾邮件,正常邮件,测试邮件等资料,可以用于朴素贝叶斯分类来检测垃圾邮件
- 新闻文本分类数据集新闻文本的特征、标签
- 复旦大学文本分类数据集复旦大学中文语料分类数据 3个子文档 一共有19666个文档 是很好的分类语料库
- 新闻文本分类数据集-数据集天池比赛 新闻文本分类数据集 test_a.csv train_set.csv
最新资源