欧拉公式求圆周率的matlab代码-attitude:姿态:物体在空间中的方向

  • u7_443487
    了解作者
  • 40.5KB
    文件大小
  • zip
    文件格式
  • 0
    收藏次数
  • VIP专享
    资源类型
  • 0
    下载次数
  • 2022-06-14 08:28
    上传日期
欧拉公式求长期率的matlab代码态度 姿态:物体在空间中的方向。 球体的旋转可以多种方式表示,例如: (又名versor) 姿态模块允许在所有这些表示之间进行转换和计算。 有关详细信息,请参见。 正在安装 如果使用NPM,请使用npm install attitude 。 否则,请下载。 支持AMD,CommonJS和香草环境。 在香草中,一种全球attitude输出: < script src =" https://unpkg.com/attitude " > </ script > < script > const attitude = attitude ( ) ; </ script > 制图表达 欧拉角 [lambda, phi, gamma] ,以度为单位。 轴角 { axis: [lon, lat], angle: alpha } ,以度为单位。 旋转矩阵 [ [r11, r12, r13], [r21, r22, r23], [r31, r32, r33] ] 单位四元数 q = [q0, q1, q2, q3, q4]的范数等于1时,也称为versor 。 旋转矢量
attitude-main.zip
  • attitude-main
  • .eslintrc.json
    113B
  • .gitignore
    76B
  • package.json
    1.2KB
  • src
  • versor.js
    2.5KB
  • math.js
    661B
  • matrix.js
    4.1KB
  • attitude.js
    3.8KB
  • index.js
    49B
  • sinpi.js
    1.5KB
  • vector.js
    304B
  • LICENSE
    1KB
  • .github
  • eslint.json
    367B
  • workflows
  • node.js.yml
    648B
  • rollup.config.js
    753B
  • README.md
    5.7KB
  • test
  • .eslintrc.json
    147B
  • attitude-test.js
    11.1KB
  • inDelta.js
    698B
  • yarn.lock
    58.4KB
内容介绍
# attitude _Attitude: orientation of an object in space._ A rotation of the sphere can be represented in various ways, such as: - [Euler Angles](#euler-angles) - [Axis-Angle](#axis-angle) - [Rotation Matrix](#rotation-matrix) - [Unit Quaternion](#unit-quaternion) (aka versor) - [Rotation Vector](#rotation-vector) The **attitude** module allows conversions and computations between all these representations. See https://observablehq.com/@fil/attitude for details. ## Installing If you use NPM, `npm install attitude`. Otherwise, download the [latest release](https://github.com/Fil/attitude/releases/latest). AMD, CommonJS, and vanilla environments are supported. In vanilla, an `attitude` global is exported: ```html <script src="https://unpkg.com/attitude"></script> <script> const attitude = attitude(); </script> ``` [Try attitude in your browser.](https://observablehq.com/collection/@fil/attitude) ## Representations ### Euler Angles `[lambda, phi, gamma]`, in degrees. ### Axis-Angle `{ axis: [lon, lat], angle: alpha }`, in degrees. ### Rotation Matrix ~~~{js} [ [r11, r12, r13], [r21, r22, r23], [r31, r32, r33] ] ~~~ ### Unit Quaternion `q = [q0, q1, q2, q3, q4]` is also called a *versor* when its norm is equal to 1. ### Rotation Vector `[ x, y, z ]` = *f(a)B*, where *f(a)* is a scalar encoding the angle, and *B* a unit vector in cartesian coordinates. *Note:* there are many ways to encode the angle, we have to settle on a default. The useful functions *f(a)* are: - *tan(a/4)*: stereographic, ‘Modified Rodrigues Parameters’. - *tan(a/2)*: gnomonic, ‘Rodrigues Parameters’, ‘Gibbs vector’. - *a*: equidistant, logarithm vector. - (vector part of the) unit quaternion: Euler angles. Defaults to the stereographic vector representation. ## API Reference <a name="attitude" href="#attitude" rel='nofollow' onclick='return false;'>#</a> attitude([<i>angles</i>]) Returns an *attitude* object. Sets the rotation’s Euler angles if the *angles* argument is specified. *attitude* is equivalent to [d3.geoRotation(angles)](https://github.com/d3/d3-geo/blob/master/README.md#geoRotation), and can be used as a function to rotate a point [longitude, latitude]. ### Operations <a name="attitude_invert" href="#attitude_invert" rel='nofollow' onclick='return false;'>#</a> *attitude*.<b>invert</b>(<i>point</i>) Returns the *inverse* rotation of the point. <a name="attitude_inverse" href="#attitude_inverse" rel='nofollow' onclick='return false;'>#</a> *attitude*.<b>inverse</b>() Returns a new attitude, inverse of the original. <a name="attitude_compose" href="#attitude_compose" rel='nofollow' onclick='return false;'>#</a> *attitude*.<b>compose</b>(<i>b</i>) Returns a new attitude, composition of the original with the argument. When *c* = *a*.compose(*b*) is applied to a point *p*, the result *c*(*p*) = *a*(*b*(*p*)): in other words, the rotation *b* will be applied first, then rotation *a*. <a name="attitude_power" href="#attitude_power" rel='nofollow' onclick='return false;'>#</a> *attitude*.<b>power</b>(<i>power</i>) Returns a new partial attitude. *a*.power(2) is twice the rotation *a*, *a*.power(.5) is half the rotation *a*. <a name="attitude_arc" href="#attitude_arc" rel='nofollow' onclick='return false;'>#</a> *attitude*.<b>arc</b>(<i>A</i>, <i>B</i>) Returns a new attitude that brings the point *A* to *B* by the shortest (geodesic) path. <a name="attitude_interpolateTo" href="#attitude_interpolateTo" rel='nofollow' onclick='return false;'>#</a> *attitude*.<b>interpolateTo</b>(<i>b</i>) Returns an interpolator that continuously transitions the original *attitude* to the argument. The result is a function of *t* that is equivalent to *attitude* for *t* = 0, and equivalent to *b* for *t* = 1. Useful for [spherical linear interpolation (SLERP)](https://observablehq.com/d/b3c52ccf8f22ef2b?collection=@fil/attitude). ### Representations <a name="attitude_angles" href="#attitude_angles" rel='nofollow' onclick='return false;'>#</a> *attitude*.<b>angles</b>([<i>angles</i>]) Sets or reads the *Euler angles* of an *attitude*, as an array [&phi;, &lambda;, &gamma;] (in degrees). <a name="attitude_axis" href="#attitude_axis" rel='nofollow' onclick='return false;'>#</a> *attitude*.<b>axis</b>([<i>axis</i>]) Sets or reads the *rotation axis* of an *attitude*, as [lon, lat] coordinates. <a name="attitude_angle" href="#attitude_angle" rel='nofollow' onclick='return false;'>#</a> *attitude*.<b>angle</b>([<i>angle</i>]) Sets or reads the *rotation angle* of an *attitude*, in degrees. <a name="attitude_versor" href="#attitude_versor" rel='nofollow' onclick='return false;'>#</a> *attitude*.<b>versor</b>([<i>versor</i>]) Sets or reads the *versor* representation of an *attitude*, as a length-4 array. <a name="attitude_matrix" href="#attitude_matrix" rel='nofollow' onclick='return false;'>#</a> *attitude*.<b>matrix</b>([<i>matrix</i>]) Sets or reads the *matrix* representation of an *attitude*, as a matrix of size 3&times;3. <a name="attitude_vector" href="#attitude_vector" rel='nofollow' onclick='return false;'>#</a> *attitude*.<b>vector</b>([<i>vector</i>]) Sets or reads the *vector* representation of an *attitude*, as a length-3 array. That array can be written f(a)B, where f is a function of the rotation’s angle, and B a unit vector respresenting the axis in cartesian coordinates. Defaults to the [stereographic](#attitude_vectorStereographic) vector: f(a) = tan(a/4). <a name="attitude_vectorStereographic" href="#attitude_vectorStereographic" rel='nofollow' onclick='return false;'>#</a> *attitude*.<b>vectorStereographic</b>([<i>vector</i>]) *Stereographic* vector: f(a) = tan(a/4). Also called the ‘Modified Rodrigues Parameters’. <a name="attitude_vectorGnomonic" href="#attitude_vectorGnomonic" rel='nofollow' onclick='return false;'>#</a> *attitude*.<b>vectorGnomonic</b>([<i>vector</i>]) *Gnomonic* vector: f(a) = tan(a/2). Also called ‘Rodrigues Parameters’ or ‘Gibbs vector’. <a name="attitude_vectorEquidistant" href="#attitude_vectorEquidistant" rel='nofollow' onclick='return false;'>#</a> *attitude*.<b>vectorEquidistant</b>([<i>vector</i>]) *Equidistant* vector: f(a) = a. Also called the logarithm vector. --- With thanks to [Jacob Rus](https://observablehq.com/@jrus), [Nadieh Bremer](https://www.visualcinnamon.com), [Mike Bostock](https://bost.ocks.org/mike/) and [Darcy Murphy](https://github.com/mrDarcyMurphy).
评论
    相关推荐
    • 非对称微分Riccati矩阵方程:求解非对称微分Riccati矩阵方程-matlab开发
      非对称微分矩阵 Riccati 方程的求解% % dY(t)/dt = AY + YB - YCY + Q (*) % Y(t0) = Y0 % % 采用后向微分公式法。... Sadek.l@ucd.ac.ma % ORCID : https://orcid.org/0000-0001-9780-2592 % % % 例子% %
    • svg矩阵变换
      NULL 博文链接:https://long316.iteye.com/blog/1332896
    • 【C++】矩阵计算代码
      矩阵计算的文件,来源网络,侵权删。只做分享使用。 里面包括很多基本功能,就不逐一介绍了,大家自己下载去看吧。都有注释的。 xia zai lian jie https://@$@$@$@$cowtransfer.@$@$@$@$@$@$com/s/e5ee8e02794c4d ...
    • 电子科技大学矩阵理论历年题.zip
      主要介绍线性空间与线性变换、内积空间与等距变换、特征值与特征向量、λ-矩阵与Jordan标准形、特殊矩阵矩阵的广义逆等等。这是一本适合工科研究生及从事工程的专业技术人员的教科书。 [1] 详情...
    • Java集合类矩阵
      NULL 博文链接:https://rensanning.iteye.com/blog/1852916
    • wMathMatrix:矩阵数学
      模块::数学矩阵 矩阵数学的抽象实现。 MathMatrix 引入了类 Matrix,这是一个多维结构,在最简单的情况下,它是一个二维矩阵。 特定形式的矩阵也可以归类为向量。... git clone https://github.com/Wandalen/wMathMatr
    • 电子科技大学矩阵理论课件总结
      主要介绍线性空间与线性变换、内积空间与等距变换、特征值与特征向量、λ-矩阵与Jordan标准形、特殊矩阵矩阵的广义逆等等。这是一本适合工科研究生及从事工程的专业技术人员的教科书。 更多信息详情...
    • 需求跟踪矩阵的问题及模板下载
      NULL 博文链接:https://qify.iteye.com/blog/612275
    • 矩阵的并行运算
      NULL 博文链接:https://fyting.iteye.com/blog/252618
    • 矩阵碰撞算法
      NULL 博文链接:https://coffeesweet.iteye.com/blog/317048