Credit-EDA-case-study

  • B9_543929
    了解作者
  • 1.7MB
    文件大小
  • zip
    文件格式
  • 0
    收藏次数
  • VIP专享
    资源类型
  • 0
    下载次数
  • 2022-06-14 01:00
    上传日期
信贷EDA案例研究 商业目标 本案例研究旨在确定模式,该模式指示客户是否难以支付分期付款,这些款项可用于采取行动,例如拒绝贷款,减少贷款金额,以较高的利率向(有风险的申请人)贷款等。这将确保不会偿还有能力偿还贷款的消费者。 本案例研究的目的是使用EDA识别此类申请人。 换句话说,公司希望了解贷款违约背后的驱动因素(或驱动因素),即作为违约的有力指标的变量。 公司可以利用这些知识进行投资组合和风险评估。 为了加深对领域的了解,建议您对风险分析进行一些独立的研究-了解变量的类型及其重要性就足够了。 该数据集包含2个文件,如下所述 “ application_data.csv”包含应用程序时客户端的所有信息。 该数据是关于客户是否有付款困难的。 “ previous_application.csv”包含有关客户以前的贷款数据的信息。 它包含以前的应用程序已被批准,取消,拒绝或未使用的报价
Credit-EDA-case-study-main.zip
  • Credit-EDA-case-study-main
  • EDA-casestudy.ipynb
    3.1MB
  • README.md
    1.3KB
内容介绍
# Credit-EDA-case-study Business Objectives This case study aims to identify patterns which indicate if a client has difficulty paying their installments which may be used for taking actions such as denying the loan, reducing the amount of loan, lending (to risky applicants) at a higher interest rate, etc. This will ensure that the consumers capable of repaying the loan are not rejected. Identification of such applicants using EDA is the aim of this case study. In other words, the company wants to understand the driving factors (or driver variables) behind loan default, i.e. the variables which are strong indicators of default. The company can utilise this knowledge for its portfolio and risk assessment. To develop your understanding of the domain, you are advised to independently research a little about risk analytics - understanding the types of variables and their significance should be enough). This dataset has 2 files as explained below 1. 'application_data.csv' contains all the information of the client at the time of application. The data is about whether a client has payment difficulties. 2. 'previous_application.csv' contains information about the client’s previous loan data. It contains the data whether the previous application had been Approved, Cancelled, Refused or Unused offer.
评论
    相关推荐
    • iris数据集
      Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,...
    • 数据集
      数据集
    • 数据集
      数据集
    • 数据集
      数据集
    • 数据集
      数据集
    • 数据集
      Clustering_Algorithm的数据集
    • 数据集
      数据集
    • 数据集
      资料
    • 数据集
      数据集
    • 数据集
      数据集