deep-learning-keras-tensorflow:使用Keras和Tensorflow的深度神经网络简介
- h3_676892了解作者
- 34.2MB文件大小
- zip文件格式
- 0收藏次数
- VIP专享资源类型
- 0下载次数
- 2022-06-14 18:33上传日期
使用Keras和Tensorflow进行深度学习
作者:Valerio Maggio
联系人:
valeriomaggio_at_gmail
git clone https://github.com/leriomaggio/deep-learning-keras-tensorflow.git
目录
第一部分:简介
人工神经网络简介
Perceptron和MLP
天真的纯Python实现
快进,sgd,反向传播
深度学习框架简介
Theano简介
Tensorflow简介
介绍Keras
概述和主要功能
core层概述
多层感知器和全连接keras.models.Sequential和Den

deep-learning-keras-tensorflow-master.zip
- deep-learning-keras-tensorflow-master
- deep-learning-osx.yml3.4KB
- 8. Extra
- 8.2 Multi-Modal Networks.ipynb10.8KB
- 8.1 Custom Layer.ipynb8.3KB
- Conclusions.ipynb2.5KB
- 0. Preamble.ipynb9.2KB
- 7. Recurrent Neural Networks
- 7.2 LSTM for Sentence Generation.ipynb14.3KB
- 7.1 RNN and LSTM.ipynb244.1KB
- data
- intro_to_ann.csv12.9KB
- kaggle_ottogroup
- train.csv11.9MB
- test.csv26.6MB
- mnist.pkl.gz14.6MB
- word_embeddings
- male_blog_list.txt2.5MB
- rt-polarity.neg597.9KB
- rt-polarity.pos611.5KB
- female_blog_list.txt2.1MB
- 2. Deep Learning Frameworks
- 2.3.1 Keras Backend.ipynb24.3KB
- 2.3 Introduction to Keras.ipynb56.2KB
- mnist_data.py7.2KB
- 2.2 Introduction - Tensorflow.ipynb59.8KB
- 2.1 Introduction - Theano.ipynb12KB
- kaggle_data.py1.8KB
- 3. Fully Connected Networks and Embeddings
- 3.0 - MNIST Dataset.ipynb6.7KB
- 3.1 Hidden Layer Representation and Embeddings.ipynb227.2KB
- LICENSE1KB
- imgs
- LSTM3-chain.png224.3KB
- keras-logo-small.jpg30.1KB
- dl_overview.png604.6KB
- rnn2.png12.6KB
- cnn2.png579.5KB
- logistic_function.png299.3KB
- MLP.png71.7KB
- keras_rank_details.jpg278.4KB
- cnn6.png101.8KB
- overfitting.png5.7KB
- resnet_bb.png32.4KB
- mlp_details.png111.8KB
- cnn3.png45.6KB
- cnn5.png110.9KB
- vgg16.png45.2KB
- fwd_step_net.png329.6KB
- keras-tensorflow-logo.jpg36.1KB
- ConvNet LeNet.png43KB
- twitter_small.png3.1KB
- bkwd_step_net.png441.9KB
- imagenet
- strawberry_1174.jpeg72.9KB
- strawberry_1189.jpeg99.7KB
- apricot_787.jpeg147.6KB
- apricot_565.jpeg199.7KB
- strawberry_1157.jpeg90.5KB
- apricot_696.jpeg56.8KB
- tf_logo.png11KB
- RNN-unrolled.png92KB
- tensorflow_head.png309.9KB
- MaxPool.png16.1KB
- resnet34.png81.2KB
- autoencoder.png21.4KB
- backprop.png153.4KB
- gmail_small.png3.4KB
- sigmoid.png23.7KB
- conv.png185.1KB
- multi-layers-1.png380.3KB
- gru.png47.5KB
- keDyv.png61.6KB
- convnets_cover.png136.2KB
- multi-layers-2.png606.7KB
- github.jpg13.8KB
- gplus_small.png3.5KB
- vgg19.png54.6KB
- multi_input_model.png21.5KB
- linkedin_small.png3.2KB
- cnn1.png165.8KB
- conference_logo.png21.2KB
- rnn.png10.9KB
- single_layer.png464KB
- Perceptron and MLP.png75.6KB
- cnn4.png66.5KB
- RNN-rolled.png21.2KB
- releases
- pyss2016_logo.png249.2KB
- pydata_florence.png21.2KB
- keras-tensorflow-logo.jpg36.1KB
- BIforum.PNG11.9KB
- pydata_london.png281.6KB
- euroscipy_2016_logo.png78.6KB
- webvalley2017.png16.8KB
- mnist.png109.6KB
- fwd_step.png125.9KB
- Perceptron.png34.6KB
- keras_rank.jpg99.5KB
- 5. HyperParameter Tuning and Transfer Learning
内容介绍
<div>
<h1 style="text-align: center;">Deep Learning with Keras and Tensorflow</h1>
<img style="text-align: left" src="https://blog.keras.io/img/keras-tensorflow-logo.jpg" width="15%" />
<div>
<br>
### Author: Valerio Maggio
#### Contacts:
<table style="border: 0px; display: inline-table">
<tbody>
<tr style="border: 0px;">
<td style="border: 0px;">
<a href="http://twitter.com/leriomaggio" target="_blank" rel='nofollow' onclick='return false;'>@leriomaggio</a>
</td>
<td style="border: 0px;">
<a href="it.linkedin.com/in/valeriomaggio" target="_blank" rel='nofollow' onclick='return false;'>valeriomaggio</a>
</td>
<td style="border: 0px;">
valeriomaggio_at_gmail
</td>
</tr>
</tbody>
</table>
```shell
git clone https://github.com/leriomaggio/deep-learning-keras-tensorflow.git
```
---
## Table of Contents
- **Part I**: **Introduction**
- Intro to Artificial Neural Networks
- Perceptron and MLP
- naive pure-Python implementation
- fast forward, sgd, backprop
- Introduction to Deep Learning Frameworks
- Intro to Theano
- Intro to Tensorflow
- Intro to Keras
- Overview and main features
- Overview of the `core` layers
- Multi-Layer Perceptron and Fully Connected
- Examples with `keras.models.Sequential` and `Dense`
- Keras Backend
- **Part II**: **Supervised Learning**
- Fully Connected Networks and Embeddings
- Intro to MNIST Dataset
- Hidden Leayer Representation and Embeddings
- Convolutional Neural Networks
- meaning of convolutional filters
- examples from ImageNet
- Visualising ConvNets
- Advanced CNN
- Dropout
- MaxPooling
- Batch Normalisation
- HandsOn: MNIST Dataset
- FC and MNIST
- CNN and MNIST
- Deep Convolutiona Neural Networks with Keras (ref: `keras.applications`)
- VGG16
- VGG19
- ResNet50
- Transfer Learning and FineTuning
- Hyperparameters Optimisation
- **Part III**: **Unsupervised Learning**
- AutoEncoders and Embeddings
- AutoEncoders and MNIST
- word2vec and doc2vec (gensim) with `keras.datasets`
- word2vec and CNN
- **Part IV**: **Recurrent Neural Networks**
- Recurrent Neural Network in Keras
- `SimpleRNN`, `LSTM`, `GRU`
- LSTM for Sentence Generation
- **PartV**: **Additional Materials**:
- Custom Layers in Keras
- Multi modal Network Topologies with Keras
---
# Requirements
This tutorial requires the following packages:
- Python version 3.5
- Python 3.4 should be fine as well
- likely Python 2.7 would be also fine, but *who knows*? :P
- `numpy` version 1.10 or later: http://www.numpy.org/
- `scipy` version 0.16 or later: http://www.scipy.org/
- `matplotlib` version 1.4 or later: http://matplotlib.org/
- `pandas` version 0.16 or later: http://pandas.pydata.org
- `scikit-learn` version 0.15 or later: http://scikit-learn.org
- `keras` version 2.0 or later: http://keras.io
- `tensorflow` version 1.0 or later: https://www.tensorflow.org
- `ipython`/`jupyter` version 4.0 or later, with notebook support
(Optional but recommended):
- `pyyaml`
- `hdf5` and `h5py` (required if you use model saving/loading functions in keras)
- **NVIDIA cuDNN** if you have NVIDIA GPUs on your machines.
[https://developer.nvidia.com/rdp/cudnn-download]()
The easiest way to get (most) these is to use an all-in-one installer such as [Anaconda](http://www.continuum.io/downloads) from Continuum. These are available for multiple architectures.
---
### Python Version
I'm currently running this tutorial with **Python 3** on **Anaconda**
```python
!python --version
```
Python 3.5.2
---
## Setting the Environment
In this repository, files to re-create virtual env with `conda` are provided for Linux and OSX systems,
namely `deep-learning.yml` and `deep-learning-osx.yml`, respectively.
To re-create the virtual environments (on Linux, for example):
```shell
conda env create -f deep-learning.yml
```
For OSX, just change the filename, accordingly.
### Notes about Installing Theano with GPU support
**NOTE**: Read this section **only** if after _pip installing_ `theano`, it raises error in enabling the GPU support!
Since version `0.9` Theano introduced the [`libgpuarray`](http://deeplearning.net/software/libgpuarray) in the stable release (it was previously only available in the _development_ version).
The goal of `libgpuarray` is (_from the documentation_) make a common GPU ndarray (n dimensions array) that can be reused by all projects that is as future proof as possible, while keeping it easy to use for simple need/quick test.
Here are some useful tips (hopefully) I came up with to properly install and configure `theano` on (Ubuntu) Linux with **GPU** support:
1) [If you're using Anaconda] `conda install theano pygpu` should be just fine!
Sometimes it is suggested to install `pygpu` using the `conda-forge` channel:
`conda install -c conda-forge pygpu`
2) [Works with both Anaconda Python or Official CPython]
* Install `libgpuarray` from source: [Step-by-step install libgpuarray user library](http://deeplearning.net/software/libgpuarray/installation.html#step-by-step-install-user-library)
* Then, install `pygpu` from source: (in the same source folder)
`python setup.py build && python setup.py install`
* `pip install theano`.
After **Theano is installed**:
```
echo "[global]
device = cuda
floatX = float32
[lib]
cnmem = 1.0" > ~/.theanorc
```
### Installing Tensorflow
To date `tensorflow` comes in two different packages, namely `tensorflow` and `tensorflow-gpu`, whether you want to install
the framework with CPU-only or GPU support, respectively.
For this reason, `tensorflow` has **not** been included in the conda envs and has to be installed separately.
#### Tensorflow for CPU only:
```shell
pip install tensorflow
```
#### Tensorflow with GPU support:
```shell
pip install tensorflow-gpu
```
**Note**: NVIDIA Drivers and CuDNN **must** be installed and configured before hand. Please refer to the official
[Tensorflow documentation](https://www.tensorflow.org/install/) for further details.
#### Important Note:
All the code provided+ in this tutorial can run even if `tensorflow` is **not** installed, and so using `theano` as the (default) backend!
___**This** is exactly the power of Keras!___
Therefore, installing `tensorflow` is **not** stricly required!
+: Apart from the **1.2 Introduction to Tensorflow** tutorial, of course.
### Configure Keras with tensorflow
By default, Keras is configured with `theano` as backend.
If you want to use `tensorflow` instead, these are the simple steps to follow:
1) Create the `keras.json` (if it does not exist):
```shell
touch $HOME/.keras/keras.json
```
2) Copy the following content into the file:
```
{
"epsilon": 1e-07,
"backend": "tensorflow",
"floatx": "float32",
"image_data_format": "channels_last"
}
```
3) Verify it is properly configured:
```python
!cat ~/.keras/keras.json
```
{
"epsilon": 1e-07,
"backend": "tensorflow",
"floatx": "float32",
"image_data_format": "channels_last"
}
---
# Test if everything is up&running
## 1
评论



相关推荐
- keras-master.rarconda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --set show_channel_urls yes 这两行代码用来改成连接清华镜像的 2、接下来安装Tensorflow,创建...
- keras_classification_tools$ git clone https://github.com/kohheinomura/keras_classification_tools.git 下面显示了如何使用Kaggle的数据来使用它。 预设值 创建一个配置文件,用于全面配置设置。可以为配置文件名称指定任何名称。在下面,...
- Keras_Examples:从https提取的示例Keras_范例 DCGAN生成人脸 深梦 神经风格转移 下一帧预测 开关变压器的文本分类 使用Transformer进行文本分类
- keras-:httpskeras-:https
- MobileNet_V2_Keras使用Keras的MobileNet V2 剧本作者:张胜东 电子邮件: 这是使用Keras的Mobilenet V2( )的Beta版实现。 由于本文的模型描述部分仍存在一些矛盾,因此该脚本是在对脚本作者的最佳理解的基础上实现的。 准备就绪...
- seya, 给Keras带来一些额外的Cosmo.zipseya, 给Keras带来一些额外的Cosmo Seya给Keras带来一些额外的Cosmo 。自由软件:BSD许可文档:https://seya.readthedocs.org 。注:这里代码库是用 Keras 0.3构建的。 在keras1中有一个分支,其中一些层被更新
- keras vgg 代码实例keras vgg 训练自己的数据.详细的观看 https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
- Keras.jl:https://keras.io的Julia包装Keras.jl:https://keras.io的Julia包装
- imdb.npz Keras用百度网盘地址:链接:https://pan.baidu.com/s/1L7rNOHsFsAJSNirWM4ykMw 密码:kjpa 。。。一开始我以为为啥这样的资源都需要资源分,待我分享的时候我懂了。资源分最少一分。。。
- GroupNormalization-keras:keras 实现组规范化。 httpsGroupNormalization_keras keras 实现组规范化。 吴宇新和何开明 [WIP警报] 该存储库仍在进行中。 组标准化的功能尚未完全检查。 实现可能是错误的。 用法 from GroupNormalization import GroupNormalization ...
最新资源