fulltext.rar

  • PUDN用户
    了解作者
  • PDF
    开发工具
  • 520KB
    文件大小
  • rar
    文件格式
  • 0
    收藏次数
  • 1 积分
    下载积分
  • 4
    下载次数
  • 2009-11-26 09:18
    上传日期
介绍模糊C均值(FCM)的一片很有用的英文文献
fulltext.rar
  • fulltext.pdf
    611.4KB
内容介绍
<html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta charset="utf-8"> <meta name="generator" content="pdf2htmlEX"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css"> <link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css"> <link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/626199fa6600d10802a6a025/raw.css"> <script src="https://static.pudn.com/base/js/compatibility.min.js"></script> <script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script> <script> try{ pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({}); }catch(e){} </script> <title></title> </head> <body> <div id="sidebar" style="display: none"> <div id="outline"> </div> </div> <div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/626199fa6600d10802a6a025/bg1.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">J<span class="_"> </span>Heuristics<span class="_"> </span>(2009)<span class="_"> </span>15:<span class="_"> </span>43&#8211;75</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">DOI<span class="_"> </span>10.1007/s10732-007-9059-6</div><div class="t m0 x1 h3 y3 ff2 fs1 fc0 sc0 ls1 ws0">On<span class="_"> </span>the<span class="_"> </span>ef&#64257;ciency<span class="_"> </span>of<span class="_"> </span>ev<span class="_ _0"></span>olutionary<span class="_"> </span>fuzzy<span class="_"> </span>clustering</div><div class="t m0 x1 h4 y4 ff2 fs2 fc0 sc0 ls2 ws0">Ricardo<span class="_"> </span>J.<span class="_"> </span>G.<span class="_ _1"> </span>B.<span class="_"> </span>Campello<span class="_"> </span><span class="ff3 ls3">&#183;<span class="_ _2"></span></span>Eduardo</div><div class="t m0 x1 h4 y5 ff2 fs2 fc0 sc0 ls4 ws0">R.<span class="_"> </span>Hruschka<span class="_"> </span><span class="ff3 ls3">&#183;<span class="_ _2"></span></span><span class="ls2">V<span class="_ _0"></span>in&#237;cius<span class="_"> </span>S.<span class="_"> </span>Alves</span></div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls5 ws0">Receiv<span class="_ _0"></span>ed:<span class="_"> </span>1<span class="_"> </span>December<span class="_"> </span>2006<span class="_"> </span>/<span class="_"> </span>Revised:<span class="_"> </span>26<span class="_"> </span>April<span class="_"> </span>2007<span class="_"> </span>/<span class="_"> </span>Accepted:<span class="_"> </span>18<span class="_"> </span>May<span class="_"> </span>2007<span class="_"> </span>/</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls6 ws0">Published<span class="_"> </span>online:<span class="_"> </span>8<span class="_"> </span>November<span class="_"> </span>2007</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls3 ws0">&#169;<span class="_"> </span>Springer<span class="_"> </span>Science+Business<span class="_"> </span>Media,<span class="_"> </span>LLC<span class="_"> </span>2007</div><div class="t m0 x1 h4 y9 ff2 fs2 fc0 sc0 ls7 ws0">Abstract<span class="_ _3"> </span><span class="ff1">This<span class="_ _4"> </span>paper<span class="_ _4"> </span>tackles<span class="_ _4"> </span>the<span class="_ _4"> </span>problem<span class="_ _4"> </span>of<span class="_ _4"> </span>sho<span class="_ _0"></span>wing<span class="_ _4"> </span>that<span class="_ _4"> </span>e<span class="_ _0"></span>volutionary<span class="_ _4"> </span>algorithms</span></div><div class="t m0 x1 h5 ya ff1 fs2 fc0 sc0 ls7 ws0">for<span class="_"> </span>fuzzy<span class="_"> </span>clustering<span class="_"> </span>can<span class="_"> </span>be<span class="_"> </span>more<span class="_"> </span>ef<span class="_ _0"></span>&#64257;cient<span class="_"> </span>than<span class="_"> </span>systematic<span class="_"> </span>(i.e.<span class="_"> </span>repetitiv<span class="_ _0"></span>e)<span class="_"> </span>approaches</div><div class="t m0 x1 h5 yb ff1 fs2 fc0 sc0 ls7 ws0">when<span class="_"> </span>the<span class="_"> </span>number<span class="_ _1"> </span>of<span class="_"> </span>clusters<span class="_ _1"> </span>in<span class="_"> </span>a<span class="_ _1"> </span>data<span class="_"> </span>set<span class="_ _1"> </span>is<span class="_"> </span>unkno<span class="_ _0"></span>wn.<span class="_"> </span>T<span class="_ _5"></span>o<span class="_"> </span>do<span class="_"> </span>so,<span class="_ _1"> </span>a<span class="_"> </span>fuzzy<span class="_ _1"> </span>version<span class="_ _1"> </span>of<span class="_"> </span>an</div><div class="t m0 x1 h5 yc ff1 fs2 fc0 sc0 ls8 ws0">Evolutionary<span class="_"> </span>Algorithm<span class="_"> </span>for<span class="_"> </span>Clustering<span class="_ _6"> </span>(EA<span class="_ _0"></span>C)<span class="_"> </span>is<span class="_"> </span>introduced.<span class="_ _6"> </span>A<span class="_"> </span>fuzzy<span class="_ _6"> </span>cluster<span class="_"> </span>validity</div><div class="t m0 x1 h5 yd ff1 fs2 fc0 sc0 ls7 ws0">criterion<span class="_ _7"> </span>and<span class="_ _7"> </span>a<span class="_ _7"> </span>fuzzy<span class="_ _7"> </span>local<span class="_ _7"> </span>search<span class="_ _7"> </span>algorithm<span class="_ _7"> </span>are<span class="_ _7"> </span>used<span class="_ _7"> </span>instead<span class="_ _7"> </span>of<span class="_ _7"> </span>their<span class="_ _7"> </span>hard<span class="_ _7"> </span>counter-</div><div class="t m0 x1 h5 ye ff1 fs2 fc0 sc0 ls7 ws0">parts<span class="_ _1"> </span>employed<span class="_ _2"> </span>by<span class="_"> </span>EA<span class="_ _0"></span>C.<span class="_ _2"> </span>Theoretical<span class="_"> </span>complexity<span class="_ _2"> </span>analyses<span class="_"> </span>for<span class="_ _2"> </span>both<span class="_"> </span>the<span class="_ _2"> </span>systematic<span class="_"> </span>and</div><div class="t m0 x1 h5 yf ff1 fs2 fc0 sc0 ls7 ws0">e<span class="_ _0"></span>volutionary<span class="_ _7"> </span>algorithms<span class="_ _4"> </span>under<span class="_ _4"> </span>interest<span class="_ _7"> </span>are<span class="_ _4"> </span>provided.<span class="_ _7"> </span>Examples<span class="_ _4"> </span>with<span class="_ _4"> </span>computational</div><div class="t m0 x1 h5 y10 ff1 fs2 fc0 sc0 ls8 ws0">experiments<span class="_"> </span>and<span class="_"> </span>statistical<span class="_"> </span>analyses<span class="_"> </span>are<span class="_"> </span>also<span class="_ _1"> </span>presented.</div><div class="t m0 x1 h4 y11 ff2 fs2 fc0 sc0 ls4 ws0">K<span class="_ _0"></span>eywords<span class="_ _3"> </span><span class="ff1 ls7">Fuzzy<span class="_"> </span>clustering<span class="_"> </span><span class="ff4 ls3">&#183;<span class="_ _1"> </span></span><span class="ls8">Evolutionary<span class="_"> </span>algorithms<span class="_"> </span><span class="ff4 ls3">&#183;<span class="_ _1"> </span></span></span>Complexity<span class="_"> </span>analyses<span class="_"> </span><span class="ff4 ls3">&#183;</span></span></div><div class="t m0 x1 h5 y12 ff1 fs2 fc0 sc0 ls8 ws0">Performance<span class="_"> </span>comparison</div><div class="t m0 x1 h4 y13 ff2 fs2 fc0 sc0 ls8 ws0">1<span class="_ _3"> </span>Introduction</div><div class="t m0 x1 h5 y14 ff1 fs2 fc0 sc0 ls7 ws0">Clustering<span class="_ _6"> </span>is<span class="_ _6"> </span>a<span class="_ _6"> </span>task<span class="_ _6"> </span>in<span class="_ _6"> </span>which<span class="_ _6"> </span>the<span class="_ _6"> </span>goal<span class="_ _6"> </span>is<span class="_ _6"> </span>to<span class="_ _6"> </span>determine<span class="_ _6"> </span>a<span class="_ _6"> </span>&#64257;nite<span class="_ _6"> </span>set<span class="_ _6"> </span>of<span class="_ _6"> </span>categories<span class="_ _6"> </span>to<span class="_ _6"> </span>de-</div><div class="t m0 x1 h5 y15 ff1 fs2 fc0 sc0 ls7 ws0">scribe<span class="_ _2"> </span>a<span class="_ _1"> </span>data<span class="_ _2"> </span>set<span class="_ _1"> </span>according<span class="_ _2"> </span>to<span class="_ _1"> </span>similarities<span class="_ _2"> </span>among<span class="_ _1"> </span>its<span class="_ _2"> </span>objects<span class="_ _1"> </span>(Kaufman<span class="_ _2"> </span>and<span class="_ _1"> </span>Rousseeuw</div><div class="t m0 x1 h5 y16 ff1 fs2 fc1 sc0 ls4 ws0">1990<span class="fc0 ls8">;<span class="_ _7"> </span>Everitt<span class="_ _7"> </span>et<span class="_ _4"> </span>al.<span class="_ _4"> </span></span>2001<span class="fc0 ls7">).<span class="_ _7"> </span>Clustering<span class="_ _4"> </span>techniques<span class="_ _7"> </span>can<span class="_ _4"> </span>be<span class="_ _7"> </span>broadly<span class="_ _4"> </span>divided<span class="_ _7"> </span>into<span class="_ _7"> </span>three</span></div><div class="t m0 x1 h5 y17 ff1 fs2 fc0 sc0 ls7 ws0">main<span class="_ _1"> </span>types<span class="_ _2"> </span>(Jain<span class="_"> </span>and<span class="_ _2"> </span>Dubes<span class="_"> </span><span class="fc1 ls4">1988<span class="_ _0"></span><span class="fc0 ls8">):<span class="_ _1"> </span>ov<span class="_ _0"></span>erlapping<span class="_ _1"> </span>(so-called<span class="_ _2"> </span>non-exclusiv<span class="_ _0"></span>e),<span class="_ _2"> </span>partitional,</span></span></div><div class="t m0 x1 h5 y18 ff1 fs2 fc0 sc0 ls8 ws0">and<span class="_ _2"> </span>hierarchical.<span class="_"> </span>The<span class="_ _2"> </span>last<span class="_ _1"> </span>two<span class="_ _2"> </span>are<span class="_ _1"> </span>related<span class="_ _2"> </span>to<span class="_"> </span>each<span class="_ _2"> </span>other<span class="_ _2"> </span>in<span class="_"> </span>that<span class="_ _2"> </span>a<span class="_ _1"> </span>hierarchical<span class="_ _2"> </span>clustering</div><div class="t m0 x1 h5 y19 ff1 fs2 fc0 sc0 ls7 ws0">is<span class="_"> </span>a<span class="_"> </span>nested<span class="_"> </span>sequence<span class="_"> </span>of<span class="_"> </span>partitional<span class="_"> </span>clusterings,<span class="_"> </span>each<span class="_"> </span>of<span class="_ _6"> </span>which<span class="_"> </span>representing<span class="_"> </span>a<span class="_"> </span>partition</div><div class="t m0 x1 h5 y1a ff1 fs2 fc0 sc0 ls7 ws0">of<span class="_"> </span>the<span class="_"> </span>data<span class="_"> </span>set<span class="_"> </span>into<span class="_"> </span>a<span class="_"> </span>dif<span class="_ _0"></span>ferent<span class="_"> </span>number<span class="_"> </span>of<span class="_"> </span>mutually<span class="_"> </span>disjoint<span class="_"> </span>subsets.</div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls3 ws0">R.J.G.B.<span class="_"> </span>Campello<span class="_"> </span>(</div><div class="t m0 x2 h6 y1c ff5 fs3 fc0 sc0 ls3 ws0">&#58882;</div><div class="t m0 x3 h7 y1b ff1 fs0 fc0 sc0 ls3 ws0">)<span class="_"> </span><span class="ff4">&#183;<span class="_ _2"> </span></span><span class="ls9">E.R.<span class="_"> </span>Hruschka</span></div><div class="t m0 x1 h2 y1d ff1 fs0 fc0 sc0 ls9 ws0">Department<span class="_"> </span>of<span class="_"> </span>Computer<span class="_"> </span>Sciences,<span class="_"> </span>Univ<span class="_ _0"></span>ersity<span class="_"> </span>of<span class="_"> </span>S&#227;o<span class="_"> </span>Paulo<span class="_"> </span>at<span class="_"> </span>S&#227;o<span class="_"> </span>Carlos,<span class="_"> </span>C.P<span class="_ _5"></span>.<span class="_"> </span>668,<span class="_"> </span>CEP<span class="_"> </span>13560-970,</div><div class="t m0 x1 h2 y1e ff1 fs0 fc0 sc0 ls9 ws0">S&#227;o-Carlos,<span class="_"> </span>SP<span class="_ _5"></span>,<span class="_"> </span>Brazil</div><div class="t m0 x1 h2 y1f ff1 fs0 fc0 sc0 lsa ws0">e-mail:<span class="_"> </span><span class="fc1">campello@icmc.usp.br</span></div><div class="t m0 x1 h2 y20 ff1 fs0 fc0 sc0 ls9 ws0">E.R.<span class="_"> </span>Hruschka</div><div class="t m0 x1 h2 y21 ff1 fs0 fc0 sc0 lsa ws0">e-mail:<span class="_"> </span><span class="fc1">erh@icmc.usp.br</span></div><div class="t m0 x1 h2 y22 ff1 fs0 fc0 sc0 lsb ws0">V.<span class="_"> </span>S<span class="_"> </span>.<span class="_ _7"> </span>A<span class="_"> </span>l<span class="_"> </span>v<span class="_"> </span>e<span class="_"> </span>s</div><div class="t m0 x1 h2 y23 ff1 fs0 fc0 sc0 ls6 ws0">COPOP/UniSantos,<span class="_"> </span>R.<span class="_"> </span>Carvalho<span class="_"> </span>de<span class="_"> </span>Mendon&#231;a<span class="_"> </span>144,<span class="_"> </span>CEP<span class="_"> </span>11070-906,<span class="_"> </span>Santos,<span class="_"> </span>SP<span class="_ _5"></span>,<span class="_"> </span>Brazil</div><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a></div><div class="pi" data-data='{"ctm":[2.037103,0.000000,0.000000,2.037103,0.000000,0.000000]}'></div></div> </body> </html>
评论
    相关推荐
    • Repeat FCM.rar
      FCM算法代码,FCM算法实现。珍藏版可以用。
    • FCM.zip
      使用matlab编写的模糊C均值算法(FCM),未使用函数
    • FCM.zip
      matlab fcm分割是一个FCM的分割程序,用于图象的分割。可以直接更改路径使用
    • fcm_1.rar
      matlab实现c均值聚类,聚类二维图像显示,以及目标函数值迭代结果
    • FCM-iris.zip
      利用模糊聚类算法(FCM)进行iris数据集的处理并进行可视化
    • fcm算法.zip
      实现元素聚类,可以使关系紧密的数字放在一起
    • fcm.rar
      OTSU和FCM算法做对比,其中FCM使用系统自带函数
    • FCM算法实现分类
      模式识别实验报告,基于模糊集的分类算法FCM
    • FCM.zip
      模糊 C 均值聚类(FCM),即众所周知的模糊 ISODATA,是用隶属度确定每个数据点属于某个聚类的程度的一种聚类算法。 1973 年, Bezdek 提出了该算法,作为早期硬 C 均值聚类(HCM)方法的一种改进。本代码是基于...
    • My_FCM.zip
      数学专业matlab程序,模糊数学FCM聚类算法程序